<p style='text-indent:20px;'>In this paper, we consider a two-species chemotaxis-Stokes system with <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>-Laplacian diffusion in two-dimensional smooth bounded domains. It is proved that the existence of time periodic solution for any <inline-formula><tex-math id="M3">\begin{document}$ \frac{15}{7}\leq p<3 $\end{document}</tex-math></inline-formula> and any large periodic source <inline-formula><tex-math id="M4">\begin{document}$ g_1(x,t) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ g_2(x,t) $\end{document}</tex-math></inline-formula>.</p>
<p style='text-indent:20px;'>In this paper, we consider a mechanochemical model in biological patterns in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ N\geq 5 $\end{document}</tex-math></inline-formula>. We first prove the existence of time periodic solution in <inline-formula><tex-math id="M3">\begin{document}$ BC(\mathbb{R}; L^{N,\infty}(\Omega)) $\end{document}</tex-math></inline-formula>. Then we obtain the existence, uniqueness and regularity of the mild solution of the problem. Finally, we prove that the mild solution can become strong solution in <inline-formula><tex-math id="M4">\begin{document}$ BC(\mathbb{R}; L^{N,\infty}(\Omega)) $\end{document}</tex-math></inline-formula>.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.