A lack of in-depth excavation of user and resources information has become the main bottleneck restricting the predictive analytics of recommendation systems in mobile commerce. This article provides a method which makes use of multi-source information to analyze consumers' requirements for e-commerce recommendation systems. Combined with the characteristics of mobile e-commerce, this method employs an improved radial basis function (RBF) network in order to determine the weights of recommendations, and an improved Dempster-Shafer theory to fuse the multi-source information. Power-spectrum estimation is then used to handle the fusion results and allow decision-making. The experimental results illustrate that the traditional method is inferior to the proposed approach in terms of recommendation accuracy, simplicity, coverage rate and recall rate. These achievements can further improve recommendation systems, and promote the sustainable development of e-business.
The identification of plant disease is the premise of the prevention of plant disease efficiently and precisely in the complex environment. With the rapid development of the smart farming, the identification of plant disease becomes digitalized and data-driven, enabling advanced decision support, smart analyses, and planning. This paper proposes a mathematical model of plant disease detection and recognition based on deep learning, which improves accuracy, generality, and training efficiency. Firstly, the region proposal network (RPN) is utilized to recognize and localize the leaves in complex surroundings. Then, images segmented based on the results of RPN algorithm contain the feature of symptoms through Chan–Vese (CV) algorithm. Finally, the segmented leaves are input into the transfer learning model and trained by the dataset of diseased leaves under simple background. Furthermore, the model is examined with black rot, bacterial plaque, and rust diseases. The results show that the accuracy of the method is 83.57%, which is better than the traditional method, thus reducing the influence of disease on agricultural production and being favorable to sustainable development of agriculture. Therefore, the deep learning algorithm proposed in the paper is of great significance in intelligent agriculture, ecological protection, and agricultural production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.