Many water-saving techniques have been developed for rice production in response to irrigation water scarcity. The selection of the water-saving methods and the optimum thresholds for obtaining maximum benefits of these regimes are largely site-specific depending mainly on soil type, soil texture, and the environment. A two-year (2017 and 2018) experiment was conducted to evaluate the response of the agronomic growth performance, yield, and water use of super rice varieties under different irrigation regimes in Jiangsu Province, China. The irrigation regimes were comprised of different water-controlled thresholds, in different growth stages. Treatments included traditional flooding irrigation (FI, as the control) and the following four water-saving irrigation (WSI) regimes: shallow adjusting irrigation (WSI1), rainwater-catching and controlled irrigation (WSI2), controlled irrigation (WSI3), and drought planting with straw mulching (WSI4). The results showed that WSI treatments significantly increased the irrigation water use efficiency by 20.60% to 56.92% as compared with FI. The WSI treatments significantly decreased the crop evapotranspiration during the rice growth period. The grain yields of WSI1, WSI2, and WSI3 were significantly increased (6.62%~7.20% for WSI1, 8.21%~12.39% for WSI2, and 8.30%~12.91% for WSI3) as compared with that of the control, whereas WSI4 decreased the rice yield by 11.69%~18.10%. This research implies that WSI2 and WSI3 have the greatest potential for promotion in the lower reaches of the Yangtze River. An optimization of the irrigation threshold of WSI1 and WSI4 should be considered to guarantee the overall benefit.
The use of water-saving irrigation techniques has been encouraged in rice fields in response to irrigation water scarcity. Straw return is an important means of straw reuse. However, the environmental impact of this technology, e.g., nitrogen leaching loss, must be further explored. A two-year (2017–2018) experiment was conducted to investigate the vertical migration and leaching of nitrogen in paddy fields under water-saving and straw return conditions. Treatments included traditional flood irrigation (FI) and two water-saving irrigation regimes: rain-catching and controlled irrigation (RC-CI) and drought planting with straw mulching (DP-SM). RC-CI and DP-SM both significantly decreased the irrigation input compared with FI. RC-CI increased the rice yield by 8.23%~12.26%, while DP-SM decreased it by 8.98%~15.24% compared with FI. NH4+-N was the main form of the nitrogen leaching loss in percolation water, occupying 49.06%~50.97% of TN leaching losses. The NH4+-N and TN concentration showed a decreasing trend from top to bottom in soil water of 0~54 cm depth, while the concentration of NO3−-N presented the opposite behavior. The TN and NH4+-N concentrations in percolation water of RC-CI during most of the rice growth stage were the highest among treatments in both years, and DP-SM showed a trend of decreasing TN and NH4+-N concentrations. The NO3−-N concentrations in percolation water showed a regular pattern of DP-SM > RC-CI > FI during most of the rice growth stage. RC-CI and DP-SM remarkably reduced the amount of N leaching losses compared to FI as a result of the significant decrease of percolation water volumes. The tillering and jointing-booting stages were the two critical periods of N leaching (accounted for 74.85%~86.26% of N leaching losses). Great promotion potential of RC-CI and DP-SM exists in the lower reaches of the Yangtze River, China, and DP-SM needs to be further optimized.
This paper focused on choosing the best design of subsurface land drainage systems in semiarid areas. The study presented three different soil layers with different hydraulic conductivity and permeability, all layers are below the drain level, and the permeability is increasing with depth. A mathematical model was formulated for the horizontal and vertical drainage optimal design. The result was a nonlinear optimization problem with nonlinear constraints, which required numerical methods for its solution. The purpose of the mathematical model is to find the best values of pipes and tubewells spacing, groundwater table drawdown, and pumps operating hours which leads to a minimum total cost of the subsurface drainage design. A computer code was developed in MATLAB environment and applied to the case study. Results show that the vertical drainage was economically better for the case study drainage network design. And the main factor affecting the mathematical model for both pipe and well drainage was the distance between pipes and tubewells. In addition, considering the lifespan of vertical drainage project, the optimal design involves the minimum possible duration of pumping stations. It is hoped that the proposed optimal mathematical model will present a design methodology by which the costs of all alternative designs can be compared so that the least-cost design is selected.
In the face of increased competition for water resources, optimal irrigation scheduling is necessary for sustainable development of irrigated agriculture. However, optimal irrigation scheduling is a nonlinear problem with many competing and conflicting objectives and constraints, and deals with an environment in which conditions are uncertain. In this study, a multi-objective optimization problem for irrigation scheduling was presented in which maximization of net benefits and water use efficiency and minimization of risk were the objectives. The presented optimization problem was solved using four different approaches, all of which used the AquaCrop model and nondominated sorting genetic algorithm III. Approach 1 used dynamic climate data without adaption; Approach 2 used dynamic climate data with adaption; Approach 3 used static climate data without adaption; and Approach 4 used static climate data with adaption. The dynamic climate data were generated using the bootstrap resampling of original climate data. A case study of maize production in north Jiangsu Province of China was used to evaluate the proposed approaches. Under the multi-objective scenario presented and other conditions of the study, Approach 4 gave the best results, and showed that irrigation depths of 400, 325, and 200 mm were required to produce a maize crop in a dry, normal, and wet year, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.