AIMTo investigate the diversity of bacterial lactase genes in the intestinal contents of mice with antibiotics-induced diarrhea.METHODSFollowing 2 d of adaptive feeding, 12 specific pathogen-free Kunming mice were randomly divided into the control group and model group. The mouse model of antibiotics-induced diarrhea was established by gastric perfusion with mixed antibiotics (23.33 mL·kg-1·d-1) composed of gentamicin sulfate and cephradine capsules administered for 5 days, and the control group was treated with an equal amount of sterile water. Contents of the jejunum and ileum were then collected and metagenomic DNA was extracted, after which analysis of bacterial lactase genes using operational taxonomic units (OTUs) was carried out after amplification and sequencing.RESULTSOTUs were 871 and 963 in the model group and control group, respectively, and 690 of these were identical. There were significant differences in Chao1 and ACE indices between the two groups (P < 0.05). Principal component analysis, principal coordination analysis and nonmetric multidimensional scaling analyses showed that OTUs distribution in the control group was relatively intensive, and differences among individuals were small, while in the model group, they were widely dispersed and more diversified. Bacterial lactase genes from the intestinal contents of the control group were related to Proteobacteria, Actinobacteria, Firmicutes and unclassified bacteria. Of these, Proteobacteria was the most abundant phylum. In contrast, the bacterial population was less diverse and abundant in the model group, as the abundance of Bradyrhizobium sp. BTAi1, Agrobacterium sp. H13-3, Acidovorax sp. KKS102, Azoarcus sp. KH32C and Aeromonas caviae was lower than that in the control group. In addition, of the known species, the control group and model group had their own unique genera, respectively.CONCLUSIONAntibiotics reduce the diversity of bacterial lactase genes in the intestinal contents, decrease the abundance of lactase gene, change the lactase gene strains, and transform their structures.
To investigate the influence of treatment on intestinal microorganisms in mice with antibiotics-induced diarrhea, mouse model of antibiotics-induced diarrhea was created by gavaging mice with mixed antibiotics (23.33 mL/kg/days) composed of gentamycin sulfate and cefradine for 5 days. Mice with the symptom of diarrhea were then treated with by intragastric administration. The control group mice were given with sterile water. After 4 day treatment, total DNA of intestinal microflora of treated and control mice was extracted, and their quantities were measured by sequencing the V4 region of 16S rDNA. The results showed that when compared to the control (sterile water), treatment with increased the operational taxonomic units (OTUs) of intestinal bacteria. The Chao index in diarrhea treated group was higher than diarrhea control group and was similar to healthy control group, while all differences had no significance ( > 0.05). treatment increased the Shannon index but not significantly ( > 0.05). Moreover, there was not significant impact on density and diversity of intestinal bacterial population at phylum and genus levels ( > 0.05). Interestingly, treatment recovered the population density of certain bacterium species, such as (in family level) ( < 0.05). Our results indicate that has potency of adjusting the density and diversity of intestinal bacteria and recovering the population density of in family level.
The current research tried to explore the effect of Qiweibaizhu powder (QWBZP) on the bacterial diversity and community structure of the intestinal mucosa of dysbiosis diarrhea mice and provide a scientific basis for the efficacy of QWBZP on antibiotic-induced diarrhea. A dysbiosis diarrhea mouse model was constructed with broad-spectrum antibiotics through a mixture of cephradine capsules and gentamicin sulfate (23.33 mL·kg-1·d-1). Intestinal mucosa was collected, and DNA was extracted from each group. The bacterial characteristics in intestinal mucosa were analyzed by MiSeq sequencing based on the 16S rRNA sequencing platform. There were no significant differences in alpha diversity indices among the three groups. The sample distributions in both the normal and QWBZP groups were relatively concentrated, and the distance among individuals was close. However, an opposite result was obtained in the model group. Furthermore, the composition and abundance of species were similar between the normal group and the QWBZP group at both the phylum and genus levels. After treatment with QWBZP, the abundance of Lactobacillus increased, and Proteobacteria decreased, and the Firmicutes/Bacteroidetes ratio decreased to a normal level. Our results indicate that QWBZP can help repair mucosal bacterial structure and recover mucosal microbiota. Specifically, QWBZP increased the abundance of Lactobacillus and Bacteroidales S24-7 group norank.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.