Unlike the unstable black phosphorous, another two-dimensional group-VA material, antimonene, was recently predicted to exhibit good stability and remarkable physical properties. However, the synthesis of high-quality monolayer or few-layer antimonenes, sparsely reported, has greatly hindered the development of this new field. Here, we report the van der Waals epitaxy growth of few-layer antimonene monocrystalline polygons, their atomical microstructure and stability in ambient condition. The high-quality, few-layer antimonene monocrystalline polygons can be synthesized on various substrates, including flexible ones, via van der Waals epitaxy growth. Raman spectroscopy and transmission electron microscopy reveal that the obtained antimonene polygons have buckled rhombohedral atomic structure, consistent with the theoretically predicted most stable β-phase allotrope. The very high stability of antimonenes was observed after aging in air for 30 days. First-principle and molecular dynamics simulation results confirmed that compared with phosphorene, antimonene is less likely to be oxidized and possesses higher thermodynamic stability in oxygen atmosphere at room temperature. Moreover, antimonene polygons show high electrical conductivity up to 104 S m−1 and good optical transparency in the visible light range, promising in transparent conductive electrode applications.
Transition metal dichalcogenides (TMDs) are promising candidates for flexible optoelectronic devices because of their special structures and excellent properties, but the low optical absorption of the ultrathin layers greatly limits the generation of photocarriers and restricts the performance. Here, we integrate all-inorganic perovskite CsPbBr nanosheets with MoS atomic layers and take the advantage of the large absorption coefficient and high quantum efficiency of the perovskites, to achieve excellent performance of the TMD-based photodetectors. Significantly, the interfacial charge transfer from the CsPbBr to the MoS layer has been evidenced by the observed photoluminescence quenching and shortened decay time of the hybrid MoS/CsPbBr. Resultantly, such a hybrid MoS/CsPbBr photodetector exhibits a high photoresponsivity of 4.4 A/W, an external quantum efficiency of 302%, and a detectivity of 2.5 × 10 Jones because of the high efficient photoexcited carrier separation at the interface of MoS and CsPbBr. The photoresponsivity of this hybrid device presents an improvement of 3 orders of magnitude compared with that of a MoS device without CsPbBr. The response time of the device is also shortened from 65.2 to 0.72 ms after coupling with MoS layers. The combination of the all-inorganic perovskite layer with high photon absorption and the carrier transport TMD layer may pave the way for novel high-performance optoelectronic devices.
Two-dimensional (2D) antimonene is a promising anode material in sodium-ion batteries (SIBs) because of its high theoretical capacity of 660 mAh g and enlarged surface active sites. However, its Na storage properties and sodiation/desodiation mechanism have not been fully explored. Herein, we propose the sodiation/desodiation reaction mechanism of 2D few-layer antimonene (FLA) based on results acquired by in situ synchrotron X-ray diffraction, ex situ selected-area electron diffraction, and theoretical simulations. Our study shows that the FLA undergoes anisotropic volume expansion along the a/b plane and exhibits reversible crystalline phase evolution (Sb ⇋ NaSb ⇋ NaSb) during cycling. Density-functional theory calculations demonstrate that the FLA has a small Na-ion diffusion barrier of 0.14 eV. The FLA delivers a larger capacity of 642 mAh g at 0.1 C (1 C = 660 mA g) and a high rate capability of 429 mAh g at 5 C and maintains a stable capacity of 620 mA g at 0.5 C with 99.7% capacity retention from the 10th to the 150th cycle. Considering the 660 mAh g theoretical capacity of Sb, the electrochemical utilization of Sb atoms of FLA is as high as 93.9% at a rate of 0.5 C for over 150 cycles, which is the highest capacity and Sb utilization ratio reported so far. Our study discloses the Na storage mechanism of 2D FLA, boosting promising applications of 2D materials for advanced SIBs.
Nowadays, the research on perovskite transistors is still in its infancy, despite the fact that perovskite-based solar cells and light-emitting diodes have been widely investigated. Two major hurdles exist before obtaining reliable perovskite-based transistors: the processing difficulty for their sensitivity to polar solvents and unsatisfactory perovskite quality on the transistor platform. Here, for the first time, we report on high-performance all-inorganic perovskite FETs profiting from both van der Waals epitaxial boundary-free ultrathin single crystals and completely dry-processed transfer technique without chemical contaminant. These two crucial factors ensure the unprecedented high-quality perovskite channels. The achieved FET hole mobility and on-off ratio reach 0.32 cm V s and 6.7 × 10, respectively. Moreover, at the low temperature, the mobility and on-off ratio can be enhanced to be 1.04 cm V s and 1.3 × 10. This work could open the door for the FET applications based on perovskite single crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.