Sea-ice hazard causes serious harm to aquaculture, marine navigation, offshore oil production and other activities in the Bohai Sea, China. To study the spatial distribution characteristics of sea-ice-hazard risk in Bohai is therefore desirable. The thickness and area of sea ice in the Bohai Sea during the winters (December–March) of 1987–2011 were estimated using data from the NOAA (US National Oceanic and Atmospheric Administration) satellite. The sea-ice thickness was converted into a sea-ice-hazard index after defining this index, and the different sea-ice-hazard risk grades were classified. The occurrence probability of sea-ice hazard was also calculated using fuzzy risk theory, and the spatial distribution characteristics of sea-ice-hazard risk in the Bohai Sea were studied. The results show that the sea-ice-hazard risk for offshore aquaculture decreased as the offshore distance increased. All the oilfields in Liaodong Bay are influenced by sea-ice hazard, two of the fields in Bohai Bay are slightly affected and the remaining fields are not influenced. The risk for marine navigation is related to the location of the port and the distance from the port. The risk in the port area is the highest; it is reduced by more than 30% at distances 10 km away from the port.
The hybrid organic–inorganic halide perovskite solar cells (PSCs) have attracted considerable attention in the photovoltaic community during the last decade due to unique properties, such as high absorption coefficient, solutionable fabrication, and compatibility with roll-to-roll technology. A certified power conversion efficiency of PSCs as high as 25.2% has been obtained, approaching the levels of silicon solar cells, copper indium gallium selenide (CIGS), and cadmium telluride (CdTe) thin-film solar cells. However, the device area of a PSC is one of the biggest challenges for the commercialize applications. To fabricate large-area PSCs, various fabrication methods have been proposed, including spray coating, slot-die coating, vacuum deposition, and blade coating. Here, the blade-coating technique progress for the PSC fabrication has been reviewed. Moreover, the optimized ways during the solution fabrication process, the efficient strategy for improving the perovskite films' morphology, have also been summarized in this work. In the last part, the challenges and opportunities of PSC commercialization have also been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.