Aiming at the problem of performance degradation caused by ignoring the softmax score of the wrong class in the training process of the unbalanced data set of Thangka images and the problem of the loss of negative feature information in the propagation process of the ReLU activation function, a new loss calculation method is proposed. Firstly, the parameters of the pre-training model on the COCO data set are used as the initial parameters. Secondly, CE and CCE are used to calculate the loss during the calculation of loss in the back propagation. Finally, AReLU activation function is used and a weight assigned to CE and CCE is added as final loss to update the parameters. The experimental results show that this algorithm improves the convergence speed and accuracy of the model with respect to imbalanced data. Compared with other loss functions, ours method performance is state-of-the-art, such as complement cross entropy.
Artificial neural networks (ANN) perform well in real-world classification problems. In this paper, a robust classification model using ANN was constructed to enhance the accuracy of breast cancer classification. Taguchi method was used to determine the suitable number of neurons in a single hidden layer of the ANN. The selection of a suitable number of neurons helps to solve the overfitting problem by affecting the classification performance of an ANN. With this, a robust classification model was then built for breast cancer classification. Based on the Taguchi method results, suitable number of neurons selected for hidden layer in this study is 15, which was used for the training of the proposed ANN model. The developed model was benchmarked upon the Wisconsin Diagnosis Breast Cancer Dataset, popularly known as the UCI dataset. Finally, the proposed model was compared with seven other existing classification models, and it was confirmed that the model in this study had the best accuracy at breast cancer classification, at 98.8%. This confirmed that the proposed model significantly improved performance.
Artificial neural networks (ANN) perform well in real-world classification problems. In this paper, a robust classification model using ANN was constructed to enhance the accuracy of breast cancer classification. Taguchi method was used to determine the suitable number of neurons in a single hidden layer of the ANN. The selection of a suitable number of neurons helps to solve the overfitting problem by affecting the classification performance of an ANN. With this, a robust classification model was then built for breast cancer classification. Based on the Taguchi method results, suitable number of neurons selected for hidden layer in this study is 15, which was used for the training of the proposed ANN model. The developed model was benchmarked upon the Wisconsin Diagnosis Breast Cancer Dataset, popularly known as the UCI dataset. Finally, the proposed model was compared with seven other existing classification models, and it was confirmed that the model in this study had the best accuracy at breast cancer classification, at 98.8%. This confirmed that the proposed model significantly improved performance.
Dynamic changes in forest biomass are closely related to the carbon cycle, climate change, forest productivity and biodiversity. However, most previous studies mainly focused on the calculation of current forest biomass, and only a few studies attempted to predict future dynamic changes in forest biomass which obtained uncertain results. Therefore, this study comprehensively considered the effects of multi-stage continuous survey data of forest permanent sample plots, site condition factors and corresponding meteorological factors using Beijing as an example. The geographic detector method was used to screen the key interfering factors that affect the growth of forest biomass. Then, based on the back-propagation artificial neural network (BP-ANN) and support vector machine (SVM) learning methods, 80% of the sample data were extracted to train the model, and thereby verify the prediction accuracy of different modeling methods using different training samples. The results showed that the forest biomass prediction models based on both the machine learning algorithms had good fitting accuracy, and there was no significant difference in the prediction results between the two models. However, the SVM model was better than the BP-ANN. While the BP-ANN model provided more volatile predictions, and the accuracy was above 80%, the prediction results of the SVM model were relatively stable, and the accuracy was above 90%. This study not only provides good technical support for the scientific estimation of regional forest biomass in the future, but also offers reliable basic data for sustainable forest management, planning decisions, forest carbon sequestration and sustainable development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.