The high infectivity and severity of SARS-CoV-2 infection (COVID-19), and our limited understanding of the biology of the novel coronavirus, as well as the lack of an effective treatment for COVID-19, have created a global pandemic. Those most likely to become seriously ill with COVID-19 are adults, especially the elderly and those who are already weak or sick. At present, a specific drug for treatment of COVID-19 has not been developed. This, combined with the typical coexistence of a variety of chronic diseases in elderly patients, makes treatment challenging at present. In addition, for elderly patients, COVID-19 isolation measures during the epidemic can easily lead to psychological problems. Thus, how to manage elderly patients has become a focus of social attention in the current circumstances. This article reviews the effects of COVID-19 and makes management suggestions for elderly patients during this epidemic period. In addition to the elderly, critically ill people are also highly susceptible to this novel coronavirus. For elderly COVID-19 patients, antiviral therapy, immune regulation, and even auxiliary respiratory therapy can be given after a comprehensive evaluation of the disease. With the approval and use of COVID-19 vaccines, it is reasonable to expect that we can conquer SARS-CoV-2.
We previously reported that iron down-regulates transcription of the leptin gene by increasing occupancy of phosphorylated cAMP response element-binding protein (pCREB) at two sites in the leptin gene promoter. Several nutrient-sensing pathways including O-GlcNAcylation also regulate leptin. We therefore investigated whether O-glycosylation plays a role in ironand CREB-mediated regulation of leptin. We found that high iron decreases protein O-GlcNAcylation both in cultured 3T3-L1 adipocytes and in mice fed high-iron diets and downregulates leptin mRNA and protein levels. Glucosamine treatment, which bypasses the rate-limiting step in the synthesis of substrate for glycosylation, increased both O-GlcNAc and leptin, whereas inhibition of O-glycosyltransferase (OGT) decreased O-GlcNAc and leptin. The increased leptin levels induced by glucosamine were susceptible to the inhibition by iron, but in the case of OGT inhibition, iron did not further decrease leptin. Mice with deletion of the O-GlcNAcase gene, either via whole-body heterozygous deletion or through adipocyte-targeted homozygous deletion, exhibited increased O-GlcNAc levels in adipose tissue and increased leptin levels that were inhibited by iron. Of note, iron increased the occupancy of pCREB and decreased the occupancy of O-GlcNAcylated CREB on the leptin promoter. These patterns observed in our experimental models suggest that iron exerts its effects on leptin by decreasing O-glycosylation and not by increasing protein deglycosylation and that neither O-GlcNAcase nor OGT mRNA and protein levels are affected by iron. We conclude that iron down-regulates leptin by decreasing CREB glycosylation, resulting in increased CREB phosphorylation and leptin promoter occupancy by pCREB.
BackgroundChronic mountain sickness (CMS) has a higher incidence in the plateau region. The one of its principal characters is excessive erythrocytosis. The PI3K-Akt pathway plays an important role in the process of erythropoiesis, and could downregulate apoptosis by regulating apoptosis-related molecules. In this paper, we explored the change in apoptosis of erythroblasts and the effect of the PI3K-Akt signal pathway on erythroblasts apoptosis in CMS.Material/MethodsA total of 22 CMS and 20 non-CMS participants were involved in this study. Bone marrow mononuclear cells were cultured and treated with celecoxib and perifosine in vitro for 72 hours. The apoptotic rate, the mRNA expressions of Akt, Bcl-xl, and caspase-9, and the protein expressions of Akt, p-Akt, Bcl-xl, and caspase-9 were determined by flow cytometry, quantitative RT-PCR, and western-blot technique.ResultsThe apoptotic rate of cultured erythroblasts was lower in the CMS group than in the non-CMS group. It was increased after perifosine intervention. The mRNA and protein expressions of Akt and Bcl-xl were higher and caspase-9 was lower in the CMS group than the non-CMS group. Perifosine induced decreased Bcl-xl mRNA and proteins and p-Akt proteins, and increased caspase-9 mRNA and proteins in vitro. In the CMS group, the hemoglobin concentration was correlated with apoptotic rate negatively and with Bcl-xl mRNA positively in erythroblasts; the erythroblasts apoptotic rate was negatively associated with the Akt mRNA and Bcl-xl mRNA.ConclusionThe erythroblasts apoptosis was downregulated and the PI3K-Akt signal pathway appeared to be involved in the mechanism of decreased erythroblasts apoptosis in CMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.