Simultaneous localization and mapping (SLAM) based on RGB-D cameras has been widely used for robot localization and navigation in unknown environments. Most current SLAM methods are constrained by static environment assumptions and perform poorly in real-world dynamic scenarios. To improve the robustness and performance of SLAM systems in dynamic environments, this paper proposes a new RGB-D SLAM method for indoor dynamic scenes based on object detection. The method presented in this paper improves on the ORB-SLAM3 framework. First, we designed an object detection module based on YOLO v5 and relied on it to improve the tracking module of ORB-SLAM3 and the localization accuracy of ORB-SLAM3 in dynamic environments. The dense point cloud map building module was also included, which excludes dynamic objects from the environment map to create a static environment point cloud map with high readability and reusability. Full comparison experiments with the original ORB-SLAM3 and two representative semantic SLAM methods on the TUM RGB-D dataset show that: the method in this paper can run at 30+fps, the localization accuracy improved to varying degrees compared to ORB-SLAM3 in all four image sequences, and the absolute trajectory accuracy can be improved by up to 91.10%. The localization accuracy of the method in this paper is comparable to that of DS-SLAM, DynaSLAM and the two recent target detection-based SLAM algorithms, but it runs faster. The RGB-D SLAM method proposed in this paper, which combines the most advanced object detection method and visual SLAM framework, outperforms other methods in terms of localization accuracy and map construction in a dynamic indoor environment and has a certain reference value for navigation, localization, and 3D reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.