Recent work has shown that it is feasible to use generative adversarial networks (GANs) for speech enhancement, however, these approaches have not been compared to state-of-the-art (SOTA) non GAN-based approaches. Additionally, many loss functions have been proposed for GAN-based approaches, but they have not been adequately compared. In this study, we propose novel convolutional recurrent GAN (CRGAN) architectures for speech enhancement. Multiple loss functions are adopted to enable direct comparisons to other GAN-based systems. The benefits of including recurrent layers are also explored. Our results show that the proposed CRGAN model outperforms the SOTA GAN-based models using the same loss functions and it outperforms other non-GAN based systems, indicating the benefits of using a GAN for speech enhancement. Overall, the CRGAN model that combines an objective metric loss function with the mean squared error (MSE) provides the best performance over comparison approaches across many evaluation metrics.
Speaker extraction aims to extract target speech signal from a multi-talker environment with interference speakers and surrounding noise, given the target speaker's reference information. Most speaker extraction systems achieve satisfactory performance on the premise that the test speakers have been encountered during training time. Such systems suffer from performance degradation given unseen target speakers and/or mismatched reference voiceprint information. In this paper we propose a novel strategy named Iterative Refined Adaptation (IRA) to improve the robustness and generalization capability of speaker extraction systems in the aforementioned scenarios. Given an initial speaker embedding encoded by an auxiliary network, the extraction network can obtain a latent representation of the target speaker, which is fed back to the auxiliary network to get a refined embedding to provide more accurate guidance for the extraction network. Experiments on WSJ0-2mix-extr and WHAM! dataset confirm the superior performance of the proposed method over the network without IRA in terms of SI-SDR and PESQ improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.