Noble metal nanostructures are currently of great interest for their unique plasmonic property and potential applications in catalysis and surface-enhanced spectroscopy. However, the application of plasmonic nanostructures for quantitatively in situ SERS monitoring of the catalytic reaction has been a great challenge for investigators because combining plasmonics with catalysis requires the same kind of noble metal nanoparticles (NPs) in two very different size regimes. Herein, We have demonstrated a facile wet chemical method to synthesize Au-Ag alloy plasmonic NPs that could combine the desired plasmonic and catalytic properties with same NPs. The catalytic activity of Au-Ag alloy NPs using the reduction of 4-nitrothiophenol (4-NTP) by sodium borohydride (NaBH 4) is chosen as a model reaction. The signals of the reaction processes are detected and identified through in situ SERS spectroscopy with high sensitivity. The insights gained by current study may serve as a promising and powerful technique for better investigation in the heterogeneous catalysis. Moreover, the reduction of aromatic nitro compounds with prepared Au-Ag alloy NPs also provides potential application in sewage treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.