It is widely believed that the trigonal β-form is favorable and effective for toughening isotactic polypropylene (iPP). Therefore, β-form content should be achieved as high as possible to realize excellent toughness in iPP. However, in this study, we demonstrate that the connection between crystallites might mainly determine the toughness of iPP instead of the β-crystal content. A new rare earth nucleator (WBG) was used to generate the rich β-crystalline structure in the compression-molded bars that were fabricated upon different molten temperatures (T f ). Interestingly, the increase in tensile elongation can be as large as 8 times for increased T f . The polymorphic composition and overall crystallinity of β-nucleated iPP are almost independent of T f . Nevertheless, the β-nucleated crystalline morphology has completely changed. Three types of β-crystalline morphology, namely, β-spherulite, β-transcrystalline entity, and "flower"-like agglomerate of β-crystallites, are sequentially obtained with increasing T f . From the morphological point of view, the connection between the crystallites in "flower"-like agglomerate is significantly better than that for the crystallites generated under lower T f . Therefore, it is concluded that the formation of β-nucleated iPP provides very good toughness only with sufficient connection between the crystallites. The result of this study clearly verifies the importance of crystal morphology on tuning the toughness of iPP. It provides important information for potential industrial applications.
It is still a challenge to fabricate polymer-based composites with excellent thermal conductive property because of the well-known difficulties such as insufficient conductive pathways and inefficient filler-filler contact. To address this issue, a synergistic segregated double network by using two fillers with different dimensions has been designed and prepared by taking graphene nanoplates (GNPs) and multiwalled carbon nanotubes (MWCNT) in polystyrene for example. In this structure, GNPs form the segregated network to largely increase the filler-filler contact areas while MWCNT are embedded within the network to improve the network-density. The segregated network and the randomly dispersed hybrid network by using GNPs and MWCNT together were also prepared for comparison. It was found that the thermal conductivity of segregated double network can achieve almost 1.8-fold as high as that of the randomly dispersed hybrid network, and 2.2-fold as that of the segregated network. Meanwhile, much higher synergistic efficiency (f) of 2 can be obtained, even greater than that of other synergistic systems reported previously. The excellent thermal conductive property and higher f are ascribed to the unique effect of segregated double network: (1) extensive GNPs-GNPs contact areas via overlapped interconnections within segregated GNPs network; (2) efficient synergistic effect between MWCNT network and GNPs network based on bridge effect as well as increasing the network-density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.