The application of a reasonable numerical calculation method is the key to accurately analyzing tunnel rock-support interactions. In this paper, we address the support constraint effect of tunnels and analyze the influence of related factors based on the confinement convergence method. Rupturable support models are developed using FLAC3D to intuitively show the numerical calculation results of tunnels. The results imply that the virtual supporting force generated by the support constraint effect should be considered in two-dimensional rock tunnel model calculations, and that the supporting force of the support should be increased by 2–3% of the maximum supporting force. Boundary effects should be considered in the three-dimensional tunnel model calculations, in which the influence range of the model boundary effect is nearly 1.5 times the tunnel span. A comparison of the field monitoring data and numerical calculations of the Baoshan tunnel project shows that the numerical results that consider the support constraint effect are in better agreement with the actual project situation. The rupturable support models can also reflect the stress and failure evolution law of supports, and provide support for the accurate evaluation of tunnel engineering stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.