Although deep networks achieve strong accuracy on a range of computer vision benchmarks, they remain vulnerable to adversarial attacks, where imperceptible input perturbations fool the network. We present both theoretical and empirical analyses that connect the adversarial robustness of a model to the number of tasks that it is trained on. Experiments on two datasets show that attack difficulty increases as the number of target tasks increase. Moreover, our results suggest that when models are trained on multiple tasks at once, they become more robust to adversarial attacks on individual tasks. While adversarial defense remains an open challenge, our results suggest that deep networks are vulnerable partly because they are trained on too few tasks.
We find that images contain intrinsic structure that enables the reversal of many adversarial attacks. Attack vectors cause not only image classifiers to fail, but also collaterally disrupt incidental structure in the image. We demonstrate that modifying the attacked image to restore the natural structure will reverse many types of attacks, providing a defense. Experiments demonstrate significantly improved robustness for several state-of-the-art models across the CIFAR-10, CIFAR-100, SVHN, and ImageNet datasets. Our results show that our defense is still effective even if the attacker is aware of the defense mechanism. Since our defense is deployed during inference instead of training, it is compatible with pre-trained networks as well as most other defenses. Our results suggest deep networks are vulnerable to adversarial examples partly because their representations do not enforce the natural structure of images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.