Azo dyes are the most widely used synthetic dyes in the printing and dyeing process. However, the discharge of untreated azo dyes poses a potential threat to aqueous ecosystems and human health. Herein, we fabricated a novel heterogeneous catalyst: activated-carbon-fiber-supported ferric alginate (FeAlg-ACF). Together with peroxymonosulfate (PMS) and visible light, this photocatalytic oxidation system was used to remove an azo dye—azophloxine. The results indicated that the proposed catalytic oxidation system can remove 100% of azophloxine within 24 min, while under the same system, the removal rates were only 92% and 84% when ferric alginate was replaced with ferric citrate and ferric oxalate, respectively, which showed the superiority of FeAlg-ACF. The degradation of azophloxine is achieved by the active radicals (SO4•− and •OH) released from PMS and persistent free radicals from activated carbon fiber. Moreover, due to ferric alginate’s highly intrinsic photosensitivity, visible radiation can further enhance the ligand-to-metal charge transfer (LMCT) processes. After 24 min of treatment, the total organic carbon of the azophloxine solution (50 μmol/L) decreased from 1.82 mg/L to 79.3 μg/L and the concentration of nitrate ions increased from 0.3 mg/L to 8.6 mg/L. That is, up to 93.5% of azophloxine molecules were completely degraded into inorganic compounds. Consequently, potential secondary contamination by intermediate organic products during catalytic degradation was prohibited. The azophloxine removal ratio was kept almost constant after seven cycles, indicating the recyclability and longevity of this system. Furthermore, the azophloxine removal was still promising at high concentrations of Cl−, HCO3−, and CO32−. Therefore, our proposed system is potentially effective at removing dye pollutants from seawater. It provides a feasible method for the development of efficient and environmentally friendly PMS activation technology combined with FeAlg-ACF, which has significant academic and application value.
Azo dyes are the most widely used synthetic dyes in the printing and dyeing process. However, the discharge of untreated azo dyes poses potential threat for human health and aqueous ecosystem. Herein, we fabricated a novel heterogenous catalyst - activated carbon fiber-supported ferric alginate (FeAlg-ACF) . Together with peroxymonosulfate (PMS) and visible light, this photocatalytic oxidation system was used to remove an azo dye - azophloxine. The results indicated that the proposed catalytic oxidation system can remove 100% azophloxine within 24 min, while under the same system, the removal rate was only 92 % and 84 % when ferric alginate was replaced with ferric citrate and ferric oxalate respectively, which showed the superiority of activated carbon fiber-supported ferric alginate. The degradation of azophloxine is achieved by the active radicals (SO4•− and •OH) released from PMS and persistent free radicals from activated carbon fiber. After treating for 24 min, the total organic carbon of azophloxine solution (50 μmol/L) decreased from 1.82 mg/L to 79.3 μg/L and the nitrate concentration of ions increased from 0.3 mg/L to 8.6 mg/L. That is, up to 93.5% azophloxine molecules were completely degraded into inorganic compounds. Consequently, potential secondary contamination by intermediate organic products during catalytic degradation was prohibited. The azophloxine removal ratio was kept almost constant after seven cycles, indicating the recyclability and longevity of this system. Furthermore, the azophloxine removal was still promising at high concentrations of Cl-, HCO3-, CO32-. Therefore, our proposed system is potentially effective to remove dye pollutants from seawater. It provides a feasible method for the development of efficient and environmental friendly PMS activation technology combined with FeAlg-ACF, has significant academic and application value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.