Plasmonic nanostructures can enable compact multiplexing of the orbital angular momentum (OAM) of light; however, strong dissipation of the highly localized OAM-distinct plasmonic fields in the near-field region hinders on-chip OAM transmission and processing. Superior transmission efficiency is offered by semiconductor nanowires sustaining highly confined optical modes, but only the polarization degree of freedom has been utilized for their selective excitation. Here we demonstrate that incident OAM beams can selectively excite single-crystalline cadmium sulfide (CdS) nanowires through coupling OAM-distinct plasmonic fields into nanowire waveguides for long-distance transportation. This allows us to build an OAM-controlled hybrid nanowire circuit for optical logic operations including AND and OR gates. In addition, this circuit enables the on-chip photoluminescence readout of OAM-encrypted information. Our results open exciting new avenues not only for nanowire photonics to develop OAM-controlled optical switches, logic gates, and modulators but also for OAM photonics to build ultracompact photonic circuits for information processing.
Orbital angular momentum (OAM) of light represents an independent degree of freedom using orthogonal helical modes for optical and quantum multiplexing, offering great potential to transform future ultrahigh-bandwidth information systems. Practical OAM communication systems suffer from turbulence-induced phase distortions to the propagating beams, decreasing the orthogonality of OAM modes through introduced modal crosstalk. To date, optical systems used for measuring OAM orthogonality breakdown in different turbulence conditions are too bulky and slow (e.g., one OAM mode at a time) for any practical use. Here, we demonstrate the use of an ultrathin OAM modesorting metasurface for characterizing the OAM orthogonality breakdown under different turbulence conditions. Our approach allows the measurement of the whole OAM spectrum at the same time. This metasurface exhibits strong OAM selectivity with an average modal crosstalk below −42.4 dB for OAM modes with topological charges ranging from −15 to +15. Our results suggest that higher-order OAM modes are as robust as lower-order modes in particular turbulence environments, paving the way for future practical free-space OAM communications harnessing high-dimensional OAM multiplexing. We demonstrated that a flat optical device with a small form factor can be integrated with practical communication systems for compact, fast, and efficient generation and detection of twisted light.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.