The transcription factor Nrf2 is a critical regulator of inflammatory responses. If and how Nrf2 also affects cytosolic nucleic acid sensing is currently unknown. Here we identify Nrf2 as an important negative regulator of STING and suggest a link between metabolic reprogramming and antiviral cytosolic DNA sensing in human cells. Here, Nrf2 activation decreases STING expression and responsiveness to STING agonists while increasing susceptibility to infection with DNA viruses. Mechanistically, Nrf2 regulates STING expression by decreasing STING mRNA stability. Repression of STING by Nrf2 occurs in metabolically reprogrammed cells following TLR4/7 engagement, and is inducible by a cell-permeable derivative of the TCA-cycle-derived metabolite itaconate (4-octyl-itaconate, 4-OI). Additionally, engagement of this pathway by 4-OI or the Nrf2 inducer sulforaphane is sufficient to repress STING expression and type I IFN production in cells from patients with STING-dependent interferonopathies. We propose Nrf2 inducers as a future treatment option in STING-dependent inflammatory diseases.
Herpes simplex virus type 1 (HSV-1) infection triggers a rapid induction of host innate immune responses. The type I interferon (IFN) signal pathway is a central aspect of host defense which induces a wide range of antiviral proteins to control infection of incoming pathogens. In some cases, viral invasion also induces DNA damage response, autophagy, endoplasmic reticulum stress, cytoplasmic stress granules and other innate immune responses, which in turn affect viral infection. However, HSV-1 has evolved multiple strategies to evade host innate responses and facilitate its infection. In this review, we summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to counteract host antiviral innate immune responses with specific focus on the type I IFN signal pathway.
Cyclic GMP-AMP synthase (cGAS) is a key DNA sensor capable of detecting microbial DNA and activating the adaptor protein stimulator of interferon genes (STING), leading to interferon (IFN) production and host antiviral responses. Cells exhibited reduced type I IFN production in response to cytosolic DNA in the absence of cGAS. Although the cGAS/STING-mediated DNA-sensing signal is crucial for host defense against many viruses, especially for DNA viruses, few viral components have been identified to specifically target this signaling pathway. Herpes simplex virus 1 (HSV-1) is a DNA virus that has evolved multiple strategies to evade host immune responses. In the present study, we found that HSV-1 tegument protein UL41 was involved in counteracting the cGAS/STING-mediated DNA-sensing pathway. Our results showed that wild-type (WT) HSV-1 infection could inhibit immunostimulatory DNA-induced activation of the IFN signaling pathway compared with the UL41-null mutant virus (R2621), and ectopic expression of UL41 decreased cGAS/STINGmediated IFN- promoter activation and IFN- production. Further study indicated that UL41 reduced the accumulation of cGAS to abrogate host recognition of viral DNA. In addition, stable knockdown of cGAS facilitated the replication of R2621 but not WT HSV-1. For the first time, HSV-1 UL41 was demonstrated to evade the cGAS/ STING-mediated DNA-sensing pathway by degrading cGAS via its RNase activity.IMPORTANCE HSV-1 is well known for its ability to evade host antiviral responses and establish a lifelong latent infection while triggering reactivation and lytic infection under stress. Currently, whether HSV-1 evades the cytosolic DNA sensing and signaling is still poorly understood. In the present study, we found that tegument protein UL41 targeted the cGAS/STING-mediated cellular DNA-sensing pathway by selectively degrading cGAS mRNA. Knockdown of endogenous cGAS could facilitate the replication of R2621 but not WT HSV-1. Furthermore, UL41 was shown for the first time to act directly on cGAS. Findings in this study could provide new insights into the host-virus interaction and help develop new approaches against HSV-1.KEYWORDS HSV-1, vhs/UL41, cGAS, DNA sensing T he innate immune system is the first line of defense against invading pathogens and is crucial for the subsequent activation of the adaptive immune response. The first step in innate immunity is to detect the invading pathogen through various pathogen recognition receptors (PRRs) which recognize pathogen-associated molecular patterns and trigger the production of type I interferon (IFN) and other antiviral factors (1, 2). Besides Toll-like receptors in the cellular membrane or endosome, Nod-like receptors and the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) in the cytoplasm, there are also several recently discovered cytosolic DNA sensors, such as cyclic GMP-AMP (cGAMP) synthase (cGAS), gamma interferon-inducible protein 16
Cytosolic DNA arising from intracellular pathogens is sensed by cyclic GMP-AMP synthase (cGAS) and triggers a powerful innate immune response. However, herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, has developed multiple mechanisms to attenuate host antiviral machinery and facilitate viral infection and replication. In the present study, we found that HSV-1 tegument protein VP22 acts as an inhibitor of cGAS/stimulator of interferon genes (cGAS/STING)-mediated production of interferon (IFN) and its downstream antiviral genes. Our results showed that ectopic expression of VP22 decreased cGAS/STING-mediated IFN-β promoter activation and IFN-β production. Infection with wild-type (WT) HSV-1, but not VP22-deficient virus (ΔVP22), inhibited immunostimulatory DNA (ISD)-induced activation of the IFN signaling pathway. Further study showed that VP22 interacted with cGAS and inhibited the enzymatic activity of cGAS. In addition, stable knockdown of cGAS facilitated the replication of ΔVP22 virus but not the WT. In summary, our findings indicate that HSV-1 VP22 acts as an antagonist of IFN signaling to persistently evade host innate antiviral responses. cGAS is very important for host defense against viral infection, and many viruses have evolved ways to target cGAS and successfully evade the attack by the immune system of their susceptible host. This study demonstrated that HSV-1 tegument protein VP22 counteracts the cGAS/STING-mediated DNA-sensing antiviral innate immunity signaling pathway by inhibiting the enzymatic activity of cGAS. The findings in this study will expand our understanding of the interaction between HSV-1 replication and the host DNA-sensing signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.