Aspect-level sentiment analysis aims to recognize the sentiment polarity of an aspect or a target in a comment. Recently, graph convolutional networks based on linguistic dependency trees have been studied for this task. However, the dependency parsing accuracy of commercial product comments or tweets might be unsatisfactory. To tackle this problem, we associate linguistic dependency trees with automatically induced aspectspecific graphs. We propose gating mechanisms to dynamically combine information from word dependency graphs and latent graphs which are learned by self-attention networks. Our model can complement supervised syntactic features with latent semantic dependencies. Experimental results on five benchmarks show the effectiveness of our proposed latent models, giving significantly better results than models without using latent graphs.
Self-training is a useful strategy for semisupervised learning, leveraging raw texts for enhancing model performances. Traditional self-training methods depend on heuristics such as model confidence for instance selection, the manual adjustment of which can be expensive. To address these challenges, we propose a deep reinforcement learning method to learn the self-training strategy automatically. Based on neural network representation of sentences, our model automatically learns an optimal policy for instance selection. Experimental results show that our approach outperforms the baseline solutions in terms of better tagging performances and stability.
The output video of the optical equipment in the aerospace measurement and control field is prone to the problem of image quality degradation caused by the operator’s unstable manual operation. to improve the classical motion estimation based video stabilization algorithm, a novel video stabilization method based on foreground detection is proposed in this paper. Firstly, a object detection datasets based on historical images of the launch center is collected and labeled. Secondly, inspired by transfer learning and prior knowledge of the image in launch center, a YOLO-based object detection method for rocket launching scene is designed. Then, the object detection method is introduced into the motion estimation based video stabilization pipeline in which the object detection is used for foreground detection so the tracked feature points are filtered to reduce the global motion estimation error caused by the motion of the background area. Thus, the error stabilization problem in the classic motion estimation-based video stabilization method is avoided. Experiments show that the video stabilization method proposed in this paper achieved better image stabilization effect in subject and object evaluation. This paper has certain reference significance for exploring the application of deep learning and artificial intelligence technology in the field of aerospace measurement and control field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.