Covalent organic frameworks (COFs) with their porous structures that are accommodative of Li salts are considered to be potential candidates for solid-state fast Li conductors. However, Li salts simply infiltrated in the pores of solid-state COFs tend to be present in closely associate ion pairs, resulting in slow ionic diffusion dynamics. Here we incorporate cationic skeleton into the COF structure to split the Li salt ion pair through stronger dielectric screening. It is observed that the concentration of free Li ions in the resulting material is drastically increased, leading to a significantly improved Li conductivity in the absence of any solvent (up to 2.09 × 10 S cm at 70 °C).
While lithium–sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium–sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g–1.
Superionic conductors with ionic conductivity on the order of mS cm −1 are expected to revolutionize the development of solid-state batteries (SSBs). However, currently available superionic conductors are limited to only a few structural families such as garnet oxides and sulfide-based glass/ceramic. Interfaces in composite systems such as alumina in lithium iodide have long been identified as a viable ionic conduction channel, but practical superionic conductors employing the interfacial conduction mechanism are yet to be realized. Here we report a novel method that creates continuous interfaces in the bulk of composite thin films. Ions can conduct through the interface, and consequently, the inorganic phase can be ionically insulating in this type of bulk interface superionic conductors (BISCs). Ionic conductivities of lithium, sodium, and magnesium ion BISCs have reached 1.16 mS cm −1 , 0.40 mS cm −1 , and 0.23 mS cm −1 at 25 °C in 25 μm thick films, corresponding to areal conductance as high as 464 mS cm −2 , 160 mS cm −2 , and 92 mS cm −2 , respectively. Ultralow overpotential and stable long-term cycling for up to 5000 h were obtained for solid-state Li metal symmetric batteries employing Li ion BISCs. This work opens new structural space for superionic conductors and urges for future investigations on detailed conduction mechanisms and material design principles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.