The 27.8 kDa protein in flounder gill (FG) cells was previously proved to be a receptor specific for lymphocystis disease virus (LCDV) entry and infection. In this paper, a 32 kDa viral attachment protein (VAP) of LCDV specifically binding to the 27.8 kDa receptor (27.8R) was found by far-Western blotting coupled with monoclonal antibodies (MAbs) against 27.8R. The 32 kDa protein was confirmed to be encoded by the open reading frame (ORF) 038 gene in LCDV-C, and predicted to contain a putative transmembrane region, multiple N-myristoylation and glycosylation sites and phosphorylation motifs. The expression plasmid of pET-32a-ORF038 was constructed and the recombinant VAP (rVAP) was obtained. Rabbit polyclonal antibodies against the rVAP were prepared and could recognize the rVAP and 32 kDa protein in LCDV. Immunogold electron microscopy showed that the 32 kDa protein was located on the surface of LCDV particles. Immunofluorescence assay demonstrated that the rVAP could bind to the 27.8R on the cell membrane of the FG monolayer and the anti-27.8R MAbs could block the rVAP binding. Pre-incubation of the rVAP with FG cells before LCDV infection, or pre-incubation of LCDV with the antibodies against the rVAP, could significantly decrease the LCDV copy numbers (P<0.05) and delay the emergence of cytopathic effects in FG cells in a dose-dependent manner. These results indicated for the first time that the 32 kDa protein functioned as an attachment protein for the initial attachment and entry of LCDV, and the interaction of the 32 kDa VAP with the 27.8R-initiated LCDV infection.
Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s), and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs), which appear to be important regulators of several innate cellular responses via classical as well as unique biochemical signaling networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.