This paper reviews the first challenge on high-dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2021. This manuscript focuses on the newly introduced dataset, the proposed methods and their results. The challenge aims at estimating a HDR image from one or multiple respective low-dynamic range (LDR) observations, which might suffer from underor over-exposed regions and different sources of noise. The challenge is composed by two tracks: In Track 1 only a single LDR image is provided as input, whereas in Track 2 three differently-exposed LDR images with inter-frame motion are available. In both tracks, the ultimate goal is to achieve the best objective HDR reconstruction in terms of PSNR with respect to a ground-truth image, evaluated both directly and with a canonical tonemapping operation.
Diabetes can cause microvessel impairment. However, these conjunctival pathological changes are not easily recognized, limiting their potential as independent diagnostic indicators. Therefore, we designed a deep learning model to explore the relationship between conjunctival features and diabetes, and to advance automated identification of diabetes through conjunctival images. Images were collected from patients with type 2 diabetes and healthy volunteers. A hierarchical multi-tasking network model (HMT-Net) was developed using conjunctival images, and the model was systematically evaluated and compared with other algorithms. The sensitivity, specificity, and accuracy of the HMT-Net model to identify diabetes were 78.70%, 69.08%, and 75.15%, respectively. The performance of the HMT-Net model was significantly better than that of ophthalmologists. The model allowed sensitive and rapid discrimination by assessment of conjunctival images and can be potentially useful for identifying diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.