Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.
Glucokinase (GK) is an important enzyme for regulating blood glucose levels and a potentially attractive target for diabetes of the young type 2 and persistent hyperinsulinemic hypoglycemia of infancy. To characterize the conformational transition of GK from the closed state to the superopen state, a series of conventional molecular dynamics (MD) and target MD (TMD) simulations were performed on both the wild-type enzyme and its mutants. Two 10-ns conventional MD simulations showed that, although the allosteric site of GK is Ϸ20 Å away from the active site, the activator is able to enhance the activity of the enzyme through conformational restriction. Fourteen TMD simulations on GK and five of its mutants revealed a reliably conformational transition pathway. The overall conformational transition includes three stages, and three likely stable intermediate states were identified by free energy scanning for the snapshots throughout the pathway. The conformational transition feature revealed by our TMD simulations rationalized several important mutagenesis and kinetic data. Remarkably, the TMD simulations predicted that Y61S, I159A, A201R, V203E, and V452S mutations, which have not been investigated so far, may facilitate the opening process of GK. These predictions also have been verified by mutagenesis and kinetic analyses in this study. These observations are beneficial to understanding the mechanism of GK regulation and designing the compounds for treating metabolic diseases. molecular dynamics ͉ mutagenesis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.