An insufficient functional relationship between adjustment factors and saturation flow rate (SFR) in the U.S. Highway Capacity Manual (HCM) method increases an additional prediction bias. The error of SFR predictions can reach 8–10%. To solve this problem, this paper proposes a comprehensive adjusted method that considers the effects of interactions between factors. Based on the data from 35 through lanes in Beijing and 25 shared through and left-turn lanes in Washington, DC, the interactions between lane width and percentage of heavy vehicles and proportion of left-turning vehicles were analyzed. Two comprehensive adjustment factor models were established and tested. The mean absolute percentage error (MAPE) of model 1 (considering the interaction between lane width and percentage of heavy vehicles) was 4.89% smaller than the MAPE of Chinese National Standard method (Standard Number is GB50647) at 13.64%. The MAPE of model 2 (considering the interaction between lane width and proportion of left-turning vehicles was 33.16% smaller than the MAPE of HCM method at 14.56%. This method could improve the accuracy of SFR prediction, provide support for traffic operation measures, alleviate the traffic congestion, and improve sustainable development of cities.
Intersections are the bottlenecks of the road network. The capacity of signalized intersections restricts the operation of the road network. Dynamic estimation of capacity is necessary for signalized intersections refined management. With the development of technology, more and more detectors were installed near the intersection. It had been the information-rich environment, which provided support for dynamic estimation of capacity. A dynamic estimation method for a saturation flow rate based on a neural network was developed. It would grasp the dynamic change of saturation flow rates and influencing factors. The measure data at three scenarios (through lanes, shared right-turn and through lanes, shared left-turn and through lanes) of signalized intersections in Beijing were taken as examples to validate the proposed method. Firstly, the traffic flow characteristics of the three scenarios and factors affecting the saturation flow rate were analyzed. Secondly, neural network models of the three scenarios were established. Then the hyperparameters of neural network models were determined. After training, the neural network structure and parameters were saved. Lastly, the test set data was validated by the training model. At the same time, the proposed method was compared with the Highway Capacity Manual (HCM) method and the statistical regression method. The results show that both regression models and neural network models have better accuracy than HCM models. In a simple scenario, the neural network models are not much different from the regression models. With the increase of complexity of scenarios, the advantages of neural network models are highlighted. In through-left lane and through-right lane scenarios, the estimated saturation flow rates used by the proposed method were 7.02%, 4.70%, respectively. In the complexity of traffic scenarios, the proposed method can estimate the saturation flow rate accurately and timely. The results could be used for signal control schemes optimizing and operation managing at signalized intersections subtly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.