This work investigated the polyanion-initiated gelation process in fabricating chitosan-tripolyphosphate (CS-TPP) nanoparticles intended to be used as carriers for delivering tea catechins. The results demonstrated that the particle size and surface charge of CS-TPP nanoparticles could be controlled by fabrication conditions. For preparation of CS-TPP nanoparticles loaded with tea catechins, the effects of modulating conditions including contact time between CS and tea catechins, CS molecular mass, CS concentration, CS-TPP mass ratio, initial pH value of CS solution, and concentration of tea catechins on encapsulation efficiency and the release profile of tea catechins in vitro were examined systematically. The study found that the encapsulation efficiency of tea catechins in CS-TPP nanoparticles ranged from 24 to 53%. In addition, FT-IR analysis showed that the covalent bonding and hydrogen bonding between tea catechins and CS occurred during the formation of CS-TPP nanoparticles loaded with tea catechins. Furthermore, studies on the release profile of tea catechins in vitro demonstrated that the controlled release of tea catechins using CS-TPP nanoparticles was achievable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.