Palladium diselenide (PdSe2), a new type of two-dimensional noble metal dihalides (NMDCs), has received widespread attention for its excellent electrical and optoelectronic properties. Herein, high-quality continuous centimeter-scale PdSe2 films with layers in the range of 3L–15L were grown using Chemical Vapor Deposition (CVD) method. The absorption spectra and DFT calculations revealed that the bandgap of the PdSe2 films decreased with the increasing number of layers, which is due to the enhancement of orbital hybridization. Spectroscopic ellipsometry (SE) analysis shows that PdSe2 has significant layer-dependent optical and dielectric properties. This is mainly due to the unique strong exciton effect of the thin PdSe2 film in the UV band. In particular, the effect of temperature on the optical properties of PdSe2 films was also observed, and the thermo-optical coefficients of PdSe2 films with the different number of layers were calculated. This study provides fundamental guidance for the fabrication and optimization of PdSe2-based optoelectronic devices.
The
alluring properties of a luminescent graphene quantum dot (GQD)-based
nanocomposite are unquestionable to realize many advanced applications,
such as sweat pH sensors. The well-suited hydrophilic polymers to
host GQDs can face an unavoidable swelling behavior, which deteriorates
the mechanical stability, whereas the hydrophobic polymers can prevent
swelling but at the same time barricade the analyte pathways to GQDs.
To resolve the two aforementioned obstacles, we develop a nanocomposite
film containing nitrogen-doped GQDs (NGQDs) incorporated into a transparent,
elastic, and self-healable polymer matrix, composed of a hydrophobic n-butyl acrylate segment and a hydrophilic N-(hydroxymethyl)acrylamide segment for wearable healthcare pH sensors
on the human body. Besides serving as the fluorescence source, NGQDs
are also designed as a nano-cross-linker to promote abundant chemical
and physical interactions within the nanocomposite network. This synergetic
effect gives rise to a 10-fold higher mechanical strength, 7-fold
increment in Young’s modulus, 4-fold increment in toughness,
and 15-fold more sensitivity in pH detection (pH 3–10) compared
to those of the pristine copolymer and NGQDs, respectively. Moreover,
the mechanically enhanced nanocomposite possesses a high self-healing
efficiency (94%) at room temperature even under water and demonstrates
a stable sensing performance after repetitive usage for 30 days. Our
work provides insights into the simple preparation of human skinlike
nanocomposite elastomers usable for wearable pH sensors.
Coalbed methane is now large-scalely explorated and exploitated in the world. The Changzhi coalbed methane block, south-central Qinshui Basin, is a new resource target zone for coalbed methane exploration and exploitation in China. However, the gas content distribution of this block and its influential factors have not yet studied. Based on the recent coalbed methane exploration and exploitation activities, the gas content distribution of coal reservoir in this block was studied. The results show that the gas content hold by the coal reservoir is 7.0 − 21.7 m3/t, which was determined by a combining control effect from geologic structure and hydrogeology. The Changzhi coalbed methane block has experienced multiple-stages geologic structure evolution, especially a tectonic-thermal event during the middle Yanshanian Orogeny improved the coal to the current R o,max 1.9 − 2.7% and meanwhile the coalbed methane was greatly generated. Subsequently, the widespreadly developed normal fault structures during the Himalayan Orogeny accelerated the coalbed methane escape through the “gas escape windows”, particularly where the location within the distance of about 1300 m to the “gas escape window” the gas content decreases significantly. Moreover, due to the action of the later Himalayan Orogeny, the slope areas of most Yanshanian fold structures were structurally cross-cut by the Himalayan normal faults, and thus an “open” syncline folds were formed. The coal reservoir was depressurized surrounding this “open” syncline structure and consequently the hydrodynamic losing effect has resulted in a comparatively lower gas content therein. By the control of geologic structure and hydrogeology, this block can be generally, compartmentalized into three hydrodynamic systems including the western groundwater stagnation region, the middle runoff region, and the north-eastern recharge region, where the hydrodynamic sealing effect at the groundwater stagnation region has made a comparatively higher gas content for the coal reservoir, but the hydrodynamic losing effect at the recharge region and runoff region has made a comparatively lower gas content of the coal reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.