Direct visualization of single-nucleotide variation (SNV) in single cells is of great importance for understanding the spatial organization of genomes and their relationship with cell phenotypes. Herein, we developed a new strategy for visualizing SNVs in a nuclear genome using colocalization of dual-engineered CRISPR probes (CoDEC). By engineering the structure of sgRNA, we incorporated a hairpin in the spacer domain for improving SNV recognition specificity and a loop in the nonfunctional domain for localized signal amplification. Using guide probe-based colocalization strategy, we can successfully distinguish on-target true positive signals from the off-target false positives with high accuracy. Comparing with a proximity ligation-based assay (CasPLA), the probe colocalization strategy extended applicable target gene sites (the distance between two designed probes can be extended to around 200nt) and improved detection efficiency. This newly developed method provides a facile way for studying in situ information on SNVs in individual cells for basic research and clinical applications with single-molecule and single-nucleotide resolutions.
Amplifying intracellular oxidative stress by organelle‐targeted reactive oxygen species (ROS) production combined with tumor cell‐specific gene disruption is a promising strategy for tumor treatment. However, due to the vulnerability of CRISPR/Cas9 ribonucleoproteins (RNPs) to ROS, co‐delivery of CRISPR/Cas9 RNPs and ROS generators to enhance the sensitivity of tumor cells to oxidative stress remains challenging. Herein, a cascade‐responsive “oxidative stress amplifier” (named DR‐TAF‐pHT/FA) is proposed, which can successively respond to cathepsin B, localized laser irradiation and ATP to generate ROS on the lysosomal membrane of tumor cells and release Cas9/sgNrf2 RNPs for efficient gene disruption. It is demonstrated that, under near infrared (NIR) irradiation, DR‐TAF‐pHT/FA achieves targeted rupture of lysosomal membranes, inducing significant intracellular oxidative stress. Meanwhile, due to the protective function of TAF coating (TA‐Fe3+ coordination self‐assembled networks), Cas9/sgNrf2 RNPs can safely escape into the cytoplasm and be released in response to ATP, further amplifying oxidative stress and promoting tumor cell apoptosis through efficient Nrf2 gene disruption. Treatment with DR‐TAF‐pHT/FA + NIR significantly improves tumor ablation efficiency and extends median survival time (over 70 days) in Hela xenograft models. This “oxidative stress amplifier” provides a new paradigm for multimodal and synergistic tumor therapy through precise lysosomal membrane bursting together with efficient Nrf2 gene disruption.
CRISPR/Cas9 systems have great potential to achieve sophisticated gene therapy and cell engineering by editing multiple genomic loci. However, to achieve efficient multiplex gene editing, the delivery system needs adequate capacity to transfect all CRISPR/Cas9 RNA species at the required stoichiometry into the cytosol of each individual cell. Herein, inspired by biomineralization in nature, we develop an all-in-one biomimetic mineralized CRISPR/Cas9 RNA delivery system. This system allows for precise control over the coencapsulation ratio between Cas9 mRNA and multiple sgRNAs, while also exhibiting a high RNA loading capacity. In addition, it enhances the storage stability of RNA at 4 °C for up to one month, and the surface of the nanoparticles can be easily functionalized for precise targeting of RNA nanoparticles in vivo at nonliver sites. Based on the above characteristics, as a proof-of-concept, our system was able to achieve significant gene-editing at each target gene (Survivin: 31.9%, PLK1: 24.41%, HPV: 23.2%) and promote apoptosis of HeLa cells in the mouse model, inhibiting tumor growth without obvious off-target effects in liver tissue. This system addresses various challenges associated with multicomponent RNA delivery in vivo, providing an innovative strategy for the RNA-based CRISPR/Cas9 gene editing.
Liver fibrosis is a progressive histological manifestation that happens in almost all chronic liver diseases. An unabated liver fibrosis may eventually develop into liver cirrhosis or hepatocellular carcinoma. Yet, the strategy for reversal of liver fibrosis is still limited. Herein, a biomimetic nano-regulator (P-ZIF8-cirDNAzyme) is developed to affect both collagen synthesis and degradation in liver to remodel collagen microenvironment. It is found that Zn (II) interference can efficiently inhibit collagen synthesis in activated hepatic stellate cells (aHSC) by inactivating proline 4 hydroxylase and affecting many fibrosis-related signaling pathways. Meanwhile, Zn (II)-dependent circular DNAzymes (cirDNAzymes) are used to efficiently silence tissue inhibitors of metalloproteinase-1, accelerating the degradation of collagen. They act in concert to recover the balance between collagen deposition and degradation. Additionally, ZIF-8-cirDNAzyme is coated by platelet membrane (PM) for precisely targeting aHSC via PM's inflammatory tropism and CD62p-CD44 interaction. In carbon tetrachloride-induced fibrotic mice, P-ZIF-8-cirDNAzyme shows a potent anti-fibrotic effect, greatly reducing the expression of collagen by 73.12% and restoring liver function nearly to normal. This work proposes a prospective platform enabling ion interference and gene silencing, collectively acting in aHSC for reversal of liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.