Menin displays either tumor suppression or promotion functions in a context-dependent manner. Previously, we proposed that Menin acts as a tumor suppressor by inhibiting cell growth in pancreatic ductal adenocarcinoma (PDAC), whereas the relationship between the Menin expression and overall survival rate of PDAC patients has not been completely elucidated, indicating the complexity of Menin functions in PDAC progression. Here, we identify Menin as a promoter of epithelial-mesenchymal transition (EMT), which is largely associated with cell migration or metastasis, with modest activity in cell growth inhibition. Ectopic expression of Menin suppresses the expression of CCAAT/enhancer-binding protein beta (CEBPB) and epithelial-specific genes by histone deacetylation and further enhances the TGF-β signaling-related EMT process. We also demonstrate that CCAAT/enhancer binding protein (C/EBP) beta (C/EBPβ; encoded by CEBPB) acts downstream of Menin and TGF-β signaling for balancing growth inhibition and EMT, and C/EBPβ overexpression could restore the anti-cancer functions of Menin in pancreatic cancer by cooperatively activating CDKN2A/B genes and antagonizing EMT processes. Taken together, our results suggest that Menin functions as an oncogene for cancer metastasis upon C/EBPβ depletion or acts as a tumor suppressor by cooperation with C/EBPβ to activate CDKN2A transcription.
Background: Gemcitabine is among the most commonly utilized chemotherapeutic agents for treating pancreatic cancer (PC), yet patients ultimately develop chemoresistance and thus exhibit a poor prognosis.Long noncoding RNAs (lncRNAs) can function as key regulators of PC progression and may serve as prognostic biomarkers in individuals with gemcitabine-resistant PC. This study sought to explore the role of the lncRNA DBH-AS1 in this oncogenic setting.Methods: Based on public databases and qRT-PCR analyses the expression of lncRNA DBH-AS1 in PC tissues and cell lines. The effects of lncRNA DBH-AS1 on proliferation and gemcitabine resistance were determined by in vitro and in vivo experiments. Luciferase reporter assay and RNA immunoprecipitation (RIP) were carried out to reveal the interaction between lncRNA DBH-AS1, miR-3163 and USP44.Results: We found that PC tissues exhibited DBH-AS1 downregulation that was particularly pronounced in gemcitabine-resistant PC tissues and cells. This DBH-AS1 downregulation was negatively correlated with the malignancy of PC tumors and with patient survival outcomes. Additionally, decreased DBH-AS1 expression in PC was found to be linked to the METTL3-dependent m 6 A methylation of the lncRNA, with functional analyses revealing that DBH-AS1 was able to suppress the growth of PC cells. Mechanistically, DBH-AS1 was able to increase PC cell sensitivity to gemcitabine by sequestering miR-3163 and thus upregulating USP44 in these tumor cells. Clinically, patient-derived PC tumor xenografts exhibiting high levels of DBH-AS1 expression were found to be responsive to gemcitabine treatment.Conclusions: Overall, these data underscore a key role for DBH-AS1 as a regulator of PC tumor growth and a promising therapeutic target capable of predicting PC patient responsiveness to gemcitabine treatment.
Pancreatic cancer is one of the most lethal cancers and its prognosis is extremely poor. Clarification of molecular mechanisms and identification of prognostic biomarkers are urgently needed. Though we previously found that LGMN was involved in pancreatic carcinoma progression, the upstream regulation of LGMN remains unknown. We used reliable software to search for the potential transcription factors that may be related with LGMN transcription, we found that ELK1 could be a new regulator of LGMN transcription that binded directly to the LGMN promoter. Moreover, knocking down of ELK1 reduced pancreatic cancer cells proliferation, invasion and survival, while LGMN restored the malignancy of pancreatic cancer in vitro and in vivo. Overexpression of ELK1 further increased cancer cells proliferation, invasion and survival. Clinically, ELK1 and LGMN were positively correlated with clinical stage, degree of differentiation and Lymph node infiltration. ELK1 and LGMN were identified as independent prognostic factors for overall survival. The patients with low expression of ELK1/LGMN survived an average of 29.65 months, whereas those with high expression of ELK1/LGMN survived an average of 16.67 months. In conclusive, our results revealed a new mechanism by which ELK1 promoted the progression of pancreatic cancer via LGMN and conferred poor prognosis.
Pancreatic neuroendocrine tumor (PNET), a heterogenous type of neoplasm with limited treatment options, is relatively rare and to date, the genetic background has remained to be fully elucidated. The present study aimed to determine the mutational landscape of PNET with and without liver metastasis, as well as its clinical application value for treatment. Fresh tumor tissues were collected from 14 patients with PNET following surgery, 4 of whom had developed liver metastasis. Subsequently, targeted next-generation sequencing of 612 cancer-associated genes and comprehensive analysis were performed on the tumor tissues. The results identified 63 somatic mutations in 53 genes in the 14 patients with PNET, amongst which menin 1 was identified as the most recurrently mutated gene. The analysis also identified several novel recurrently mutated genes, including adrenoceptor alpha 2B, ARVCF delta catenin family member, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase and neuregulin 1. Among the 53 mutated genes, 11 were enriched in the PI3K/AKT signaling pathway (adjusted P=7.12x10 -5 ). In addition, 4 patients with PNET with liver metastasis had distinctly different mutational profiles compared with those without liver metastasis; 13 genes were discovered to be exclusively mutated in the liver metastasis group of the patients with PNET, including ATRX chromatin remodeler, thioredoxin reductase 2, anus kinase 3, ARVCF delta catenin family member, integrin subunit alpha V and RAD50 double strand break repair protein. In addition, two potentially actionable alterations in BRCA2 DNA repair-associated (p.Q548Q) and neurofibromin 1 (p.Q1188X) were identified using the OncoKB database. In conclusion, the present study generated a comprehensive mutational profile of 14 patients with PNET and further described the features of patients with liver metastasis, which highlights potential targets for drug development of PNET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.