The full-length genomic DNA of MCAT (Malonyl-CoA:acyl carrier protein transacylase) in Brassica napus was cloned. BnMCAT shares very high identity with AtMCAT in gene sequence and gene structure. A multiple alignment of the protein sequence showed that BnMCAT shares high identity with other MCATs from E. coli and plants. BnMCAT was expressed in all tissues, such as roots, stems, leaves, flowers, and seeds, and no significant differences in the expression level were found in different embryo stages after pollination. According to an in vitro relative activity analysis, purified recombinant BnMCAT expressed in E. coli had transacylase activity. Although the relative activities of BnMCAT in crude extracts isolated from different staged embryos were similar and showed little variation, a higher relative activity was found in a crude extract isolated from embryos in comparison to leaves. Different relative activities of BnMCAT in crude extracts isolated from cultivars with different oil content were also found, suggesting that the activity of BnMCAT might be a decisive factor for a high oil content. Together, these results showed that BnMCAT is an important enzyme in the FAS system and indicate that BnMCAT might be a new target enzyme for future crop improvement through genetic engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.