CD8+ T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment1–4. Reactivating the cytotoxicity of CD8+ T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme5, led to potentiated effector function and enhanced proliferation of CD8+ but not CD4+ T cells. This is due to the increase in the plasma membrane cholesterol level of CD8+ T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8+ T cells were better than wild-type CD8+ T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile6,7, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.
Immune checkpoint blockade therapy has become a major weapon in fighting cancer. Antibody drugs, such as anti-PD-1 and anti-PD-L1, demonstrate obvious advantages such as broad applicability across cancer types and durable clinical response when treatment is effective. However, the overall response rates are still unsatisfying, especially for cancers with low mutational burden. Moreover, adverse effects, such as autoimmune symptoms and tumor hyperprogression, present a significant downside in some clinical applications. These challenges reflect the urgent need to fully understand the basic biology of immune checkpoints. In this review, we discuss regulation of immune checkpoint signaling at multiple levels to provide an overview of our current understanding of checkpoint biology. Topics include the regulation of surface expression levels for known immune checkpoint proteins via surface delivery, internalization, recycling, and degradation. Upon reaching the surface, checkpoints engage in both conventional trans and also cis interactions with ligands to induce signaling and regulate immune responses. Novel therapeutic strategies targeting these pathways in addition to classical checkpoint blockade have recently emerged and been tested in preclinical models, providing new avenues for developing next-generation immunotherapies.
Summary Many immune system receptors signal through cytoplasmic tyrosine-based motifs (ITAMs), but how receptor ligation results in ITAM phosphorylation remains unknown. Live cell imaging studies showed a close interaction of the CD3ε cytoplasmic domain of the T cell receptor (TCR) with the plasma membrane through fluorescence resonance energy transfer (FRET) between a C-terminal fluorescent protein and a membrane fluorophore. Electrostatic interactions between basic CD3ε residues and acidic phospholipids enriched in the inner leaflet of the plasma membrane were required for binding. The nuclear magnetic resonance (NMR) structure of the lipid-bound state of this cytoplasmic domain revealed deep insertion of the two key tyrosines into the hydrophobic core of the lipid bilayer. Receptor ligation thus needs to result in unbinding of the CD3ε ITAM from the membrane to render these tyrosines accessible to Src kinases. Sequestration of key tyrosines into the lipid bilayer represents a previously unrecognized mechanism for control of receptor activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.