Abstract:The South China Sea is a major shipping hub between the West Pacific and Indian Oceans. In this region, the demand for energy is enormous, both for residents' daily lives and for economic development. Wave energy and wind energy are two major clean and low-cost ocean sources of renewable energy. The reasonable development and utilization of these energy sources can provide a stable energy supply for coastal cities and remote islands of China. Before wave energy and wind energy development, however, we must assess the potential of each of these sources. Based on high-resolution and high-accuracy wave field data and wind field data obtained by ERA-Interim reanalysis for the recent 38-year period from 1979-2016, the joint development potential of wave energy and wind energy was assessed in detail for offshore and nearshore areas in the South China Sea. Based on potential installed capacity, the results revealed three promising areas for the joint development of nearshore wave energy and wind energy, including the Taiwan Strait, Luzon Strait and the sea southeast of the Indo-China Peninsula. For these three dominant areas (key stations), the directionality of wave energy and wind energy propagation were good in various seasons; the dominant wave conditions and the dominant wind conditions were the same, which is advantageous for the joint development of wave and wind energy. Existing well-known wave energy converters (WECs) are not suitable for wave energy development in the areas of interest. Therefore, we must consider the distributions of wave conditions and develop more suitable WECs for these areas. The economic and environmental benefits of the joint development of wave and wind energy are high in these promising areas. The results described in this paper can provide references for the joint development of wave and wind energy in the South China Sea.
This study validated wind speed (WS) and significant wave height (SWH) retrievals from the Sentinel-3A/3B and Jason-3 altimeters for the period of data beginning 31 October 2019 (to 18 September 2019 for Jason-3) using moored buoy data and satellite Meteorological Operational Satellite Program (MetOp-A/B) Advanced Scatterometer (ASCAT) data. The spatial and temporal scales of the collocated data were 25 km and 30 min, respectively. The statistical metrics of root mean square error (RMSE), bias, correlation coefficient (R), and scatter index (SI) were used to validate the WS and SWH accuracy. Validation of WS against moored buoy data indicated errors of 1.19 m/s, 1.13 m/s and 1.29 m/s for Sentinel-3A, Sentinel-3B and Jason-3, respectively. The accuracy of Sentinel-3A/3B WS is better than that of Jason-3. All three altimeters underestimated WS slightly in comparison with the buoy data. Errors in WS at different speeds or SWHs increased slightly as WS or SWH increased. Over time, the accuracy of the Jason-3 altimeter-derived WS improved, whereas that of Sentinel-3A showed no temporal dependence. The WSs of the three altimeters were compared with ASCAT wind data for validation purposes over the global ocean without in situ measurements. On average, the WSs of the three altimeters were lower in comparison with the ASCAT data. The accuracy of the three altimeters was found to be consistent and stable at low/medium speeds but it decreased when the WS exceeded 15 m/s. Validations of SWH against buoy wave data indicated that the accuracy of Jason-3 SWH was better than that of Sentinel-3A/3B. However, the accuracy of all three altimeters decreased when the SWH exceeded 4 m. The accuracy of Sentinel-3A and Jason-3 SWH was temporally stable, whereas that of Sentinel-3B SWH improved over time. Analyses of SWH accuracy as a function of wave period showed that the Jason-3 altimeter was better than the Sentinel-3A/3B altimeters for long-period ocean waves. Generally, the accuracy of WS and SWH data derived by the Sentinel-3A/3B and Jason-3 altimeters satisfies their mission requirements. Overall, the accuracy of WS (SWH) derived by Sentinel-3A/3B (Jason-3) is better than that retrieved by Jason-3 (Sentinel-3A/3B).
Based on ERA-Interim reanalysis wave field data for the 36 years from 1979 to 2014, the temporal and spatial distributions and development potential of wave energy are studied in detail in the offshore and relatively nearshore waters adjacent to the Zhoushan Islands. The results show that areas of relatively high wave energy are located in the offshore waters to the east and southeast of the Zhoushan Islands. The potential wave energy in relatively nearshore waters (water depths from 10 m to 65 m) is relatively higher and especially in the nearshore waters to the southeast of the city of Taizhou, Zhejiang Province, which are suitable locations for wave energy development. The conclusions provide scientific guidance for wave energy development in the sea areas adjacent to the Zhoushan Islands.
The co-located normalized radar backscatter cross section measurements from the Global Precipitation Measurement (GPM) Ku/Ka-band dual-frequency precipitation radar (DPR) and sea surface wind; wave and temperature observations from the National Data Buoy Center (NDBC) moored buoys are used to analyze the dependence and sensitivity of Ku- and Ka-band backscatter on surface conditions at low-incidence angles. Then the potential for inverting wind and wave parameters directly from low-incidence σ0 measurements is discussed. The results show that the KaPR σ0 is more sensitive to surface conditions than the KuPR σ0 overall. Nevertheless; both the KuPR σ0 and KaPR σ0 are strongly correlated with wind speed (U10) and average wave steepness (δa) with the exception of specific transitional incidence angles. Moreover, U10 and δa could be retrieved from pointwise σ0 near nadir and near 18°. Near 18°; wind direction information is needed as the effect of wind direction on σ0 becomes increasingly significant with incidence angle. To improve the performance of U10 retrieval; especially for low U10; auxiliary δa information would be most helpful; and sea surface temperature is better taken into account. Other wave parameters; such as significant wave height; wave period and wave age; are partly correlated with σ0. It is generally more difficult to retrieve those parameters directly from pointwise σ0. For the retrieval of those wave parameters; various auxiliary information is needed. Wind direction and wave direction cannot be retrieved from pointwise σ0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.