Anticounterfeiting materials are used to distinguish real banknotes, products, and documents from counterfeits, fakes, or unauthorized replicas. However, conventional anticounterfeiting materials generally exhibit a single anticounterfeiting function, resulting in a low level of security. Herein, a novel anticounterfeiting nanocomposite is demonstrated with numerous prominent security features. The nanocomposite is fabricated by doping upconverting nanoparticles (UCNPs) in a photoresponsive azobenzene‐containing polymer (azopolymer). Because of the cis–trans photoisomerization of the azopolymer, the nanocomposite exhibits photoinduced reversible color changes suitable for anticounterfeiting applications. Additionally, the hard nanocomposite can be converted to a rubber‐like soft solid by light irradiation. Imprinted microstructures are fabricated on the photosoftened nanocomposite, which result in photonic colors. Moreover, polarization‐dependent structures are fabricated on the nanocomposite via photoinduced orientation for encryption. Importantly, UCNPs in the nanocomposite emit visible light upon excitation by near‐infrared light, enabling the observation of various anticounterfeiting structures with high contrast. An advantage of the anticounterfeiting nanocomposite is that the security features can be observed by the naked eye for quick discrimination and can be analyzed using laboratory equipment for higher accuracy. The anticounterfeiting nanocomposite is easily processed on paper, glass, and plastic, which demonstrates its potential anticounterfeiting functions for banknotes, wines, and medicines.
Photochemical crystal ↔ liquid transitions (PCLTs) are interesting phenomena that couple reversible photochemical transformations with thermophysical phase transitions. A potential application of PCLTs is the development of photoresponsive smart materials capable of exerting reversible adhesion capacities on specific surfaces at a desired timing, which are unattainable for conventional adhesives. However, PCLT-based adhesives generally use UV light as the stimulus, which could lead to degradation of materials and health problems. Here, visible-light-controlled smart and robust adhesives are developed using small-molecule azo photoswitches. These azo molecules can undergo very efficient trans-crystal → cis-liquid and cis-liquid → trans-crystal transitions under 405 and 532 nm light irradiations, respectively. Their trans-crystal state displays strong adhesion strengths on various substrates, e.g., 1.13 MPa on quartz/quartz and 1.58 MPa on wood/wood, and very fast light-induced separation of glued substrates can be accomplished within 1 s along with the loss of adhesion strength in the cis-liquid state. Robust switching of the adhesion strength is demonstrated in multiple cycles, and these adhesives can also work well in underwater environments. Visible-light-controlled reversible PCLTs can be a very promising strategy in the pursuit of high-performance photoresponsive adhesives.
The self-assembly properties and photoresponsive behaviours of an azobenzene-containing block copolymer poly(acrylic acid-block-6-(4-(p-tolyldiazenyl)phenoxy)hexyl acrylate) (PAA-b-PAzo) are reported. As azobenzene has reversible trans–cis photoisomerization abilities, the trans PAA-b-PAzo solutions were converted...
The development of polymers with efficient photoinduced reversible solid-to-liquid transitions is desirable for the design of healable materials, reconfigurable devices, and switchable adhesives. Herein, we demonstrate that an azobenzene-containing polyacrylate P-H exhibits more efficient photoinduced reversible solid-to-liquid transitions than its polymethacrylate analogue P-Me. The side chain of P-H or P-Me contains a hexamethylene spacer, a photoresponsive azobenzene group, and an n-decyl tail. Both P-H and P-Me show reversible cis–trans photoisomerization. Solid trans P-H and P-Me change to liquid cis ones via UV-light-induced trans-to-cis isomerization; liquid cis P-H and P-Me revert to solid trans ones via visible-light-induced cis-to-trans back isomerization. Differential scanning calorimetry and rheology measurements revealed that photoinduced reversible solid-to-liquid transitions occur because P-H and P-Me have photoswitchable glass transition temperatures. Although P-Me exhibits a slightly faster rate for trans-to-cis photoisomerization than P-H due to fewer aggregates in solid state, cis P-H flows 20 times faster than cis P-Me because P-H has a more flexible polymer backbone. The low viscosity of cis P-H makes photoinduced solid-to-liquid transition efficient and enables the design of rapidly healable coatings. Our study shows that the design of a flexible backbone is a new strategy to develop rapidly healable polymers with more efficient photoinduced solid-to-liquid transitions.
Bidimensional two-component mixtures of gas permeable polymeric membrane mat er i a 1 s , po 1 yme thy1 me thacry 1 at e ( PMMA ) , poly-1 -me thy 1 -Z-propy 1 ace ty 1 ene ( PMPA ) poly-1t r i methyl s i 1 y 1 -1 -propyne (PTMSP) with palmitic acid were studied in monolayer, in order to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.