Cervical ossification of the posterior longitudinal ligament (cOPLL) is one of the major causes of myelopathy. However, the mechanism underlying remains elusive. In the present study, using MILLIPLEX magnetic bead panel, we investigated four serum hormones and six serum cytokines in cOPLL patients and healthy subjects. The results showed that tumor necrosis factore-α (TNF-α) were significantly increased, and DDK-1 was significantly decreased in the serum from male and female cOPLL patients compared with those from healthy controls, respectively. Osteopontin (OPN) and fibroblast growth factor-23 (FGF-23) were significantly increased in male cOPLL patients compared with that in healthy male controls. Further analysis showed that FGF-23 and OPN significantly increased, dickkopf-1 (DKK-1) decreased in the extensive cOPLL group. In addition, a significant positive correlation between the OPN and FGF-23 was observed in male cOPLL patients. The results are useful for understanding the mechanism underlying cOPLL.
Zwitterionic materials are widely applied in the biomedical field due to their excellent antimicrobial, non-cytotoxicity, and antifouling properties but have never been applied in bone tissue engineering. In this study, we synthesized a novel zwitterionic hydrogel incorporated with graphene oxide (GO) using maleic anhydride (MA) as a cross-linking agent by grafted L-cysteine (L-Cys) as the zwitterionic material on maleilated chitosan via click chemistry. The composition and each reaction procedure of the novel zwitterionic hydrogel were characterized via X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FT-IR), while the morphology was imaged by scanning electron microscope (SEM). In vitro cell studies, CCK-8 and live/dead assay, alkaline phosphatase activity, W-B, and qRT-CR tests showed zwitterionic hydrogel incorporated with GO remarkably enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs); it is dose-dependent, and 2 mg/mL GO is the optimum concentration. In vivo tests also indicated the same results. Hence, these results suggested the novel zwitterionic hydrogel exhibited porous characteristics similar to natural bone tissue. In conclusion, the zwitterionic scaffold has highly biocompatible and mechanical properties. When GO was incorporated in this zwitterionic scaffold, the zwitterionic scaffold slows down the release rate and reduces the cytotoxicity of GO. Zwitterions and GO synergistically promote the proliferation and osteogenic differentiation of rBMSCs in vivo and in vitro. The optimal concentration is 2 mg/mL GO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.