Migraine is a primary headache disorder characterized by recurrent attacks of throbbing pain associated with neurological, gastrointestinal and autonomic symptoms. Previous studies have detected structural deficits and functional impairments in migraine patients. However, researchers have failed to investigate the functional connectivity alterations of regions with structural deficits during the resting state. Twenty-one migraine patients without aura and 21 age- and gender-matched healthy controls participated in our study. Voxel-based morphometric (VBM) analysis and functional connectivity were employed to investigate the abnormal structural and resting-state properties, respectively, in migraine patients without aura. Relative to healthy comparison subjects, migraine patients showed significantly decreased gray matter volume in five brain regions: the left medial prefrontal cortex (MPFC), dorsal anterior cingulate cortex (dACC), right occipital lobe, cerebellum and brainstem. The gray matter volume of the dACC was correlated with the duration of disease in migraine patients, and thus we chose this region as the seeding area for resting-state analysis. We found that migraine patients showed increased functional connectivity between several regions and the left dACC, i.e. the bilateral middle temporal lobe, orbitofrontal cortex (OFC) and left dorsolateral prefrontal cortex (DLPFC). Furthermore, the functional connectivity between the dACC and two regions (i.e. DLPFC and OFC) was correlated with the duration of disease in migraine patients. We suggest that frequent nociceptive input has modified the structural and functional patterns of the frontal cortex, and these changes may explain the functional impairments in migraine patients.
Converging evidence has identified cognitive control deficits in internet gaming disorder (IGD). Recently, mounting evidence had revealed that resting state functional connectivity (RSFC) and structural connectivity of frontostriatal circuits could modulate cognitive control in healthy individuals. Unfortunately, relatively little is known about the thoroughly circuit-level characterization of the frontostriatal pathways (both the dorsal and ventral striatum) during resting-state and their association with cognitive control in IGD. In the current study, the differences of striatum volume and RSFC networks were investigated between 43 young IGD individuals and 44 healthy controls. Meanwhile, cognitive control deficits were assessed by Stroop task performances. The neuroimaging findings were then correlated with the Stroop task behaviors. In IGD subjects, we demonstrated an increased volume of right caudate and nucleus accumbens (NAc) as well as reduced RSFC strength of dorsal prefrontal cortex (DLPFC)-caudate and orbitofrontal cortex (OFC)-NAc. NAc volumes were positively correlated with internet addiction test scores in IGD. The caudate volume and DLPFC-caudate RSFC was correlated with the impaired cognitive control (more incongruent errors in Stroop task) in IGD. Consistent with substance use disorder (SUD) findings, we detected striatum volume and frontostriatal circuits RSFC differences between IGD and healthy controls, which provided evidence of some degree of the similarity between IGD and SUD. More importantly, the cognitive control deficits in IGD were correlated with the reduced frontostrital RSFC strength. It is hoped that our results could shed insight on the neurobiological mechanisms of IGD and suggest potential novel therapeutic targets for treatment.
Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.
Objective: Internet gaming disorder (IGD) has been investigated by many behavioral and neuroimaging studies, for it has became one of the main behavior disorders among adolescents. However, few studies focused on the relationship between alteration of gray matter volume (GMV) and cognitive control feature in IGD adolescents.Methods: Twenty-eight participants with IAD and twenty-eight healthy age and gender matched controls participated in the study. Brain morphology of adolescents with IGD and healthy controls was investigated using an optimized voxel-based morphometry (VBM) technique. Cognitive control performances were measured by Stroop task, and correlation analysis was performed between brain structural change and behavioral performance in IGD group.Results: The results showed that GMV of the bilateral anterior cingulate cortex (ACC), precuneus, supplementary motor area (SMA), superior parietal cortex, left dorsal lateral prefrontal cortex (DLPFC), left insula, and bilateral cerebellum decreased in the IGD participants compared with healthy controls. Moreover, GMV of the ACC was negatively correlated with the incongruent response errors of Stroop task in IGD group.Conclusion: Our results suggest that the alteration of GMV is associated with the performance change of cognitive control in adolescents with IGD, which indicating substantial brain image effects induced by IGD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.