For electric taxicabs, the idle time spent on cruising for passengers, seeking chargers, and charging is wasteful. Previous works can only save cruising time through better routing, or charger seeking and charging time through proper charger deployment, but not for both. With the advancement of wireless charging techniques, efficient opportunistic charging of electric vehicles at their parked positions becomes possible. This enables a taxicab to get charged while waiting for the next passenger. In this paper, we present an opportunistic wireless charger deployment scheme in a city, which both maximizes the taxicabs' opportunity of picking up passengers at the chargers and supports the taxicabs' continuous operability on roads, while minimizing the total deployment cost. We studied a metropolitan-scale taxicab dataset on several factors important for deploying wireless chargers and determining the numbers of the chargers in the regions: the number of passengers, the functionalities of buildings, and the frequency of passenger appearance in a region, and taxicab traffic flows in a city. Then, we formulate a multi-objective optimization problem and find the solution. Our trace-driven experiments demonstrate the superior performance of our scheme over other representative methods in terms of reducing idle time and supporting the operability of the taxicabs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.