Single-photon avalanche diodes (SPADs) are novel image sensors that record photons at extremely high sensitivity. To reduce both the required sensor area for readout circuits and the data throughput for SPAD array, in this paper, we propose a snapshot compressive sensing single-photon avalanche diode (CS-SPAD) sensor which can realize on-chip snapshot-type spatial compressive imaging in a compact form. Taking advantage of the digital counting nature of SPAD sensing, we propose to design the circuit connection between the sensing unit and the readout electronics for compressive sensing. To process the compressively sensed data, we propose a convolution neural-network-based algorithm dubbed CSSPAD-Net which could realize both high-fidelity scene reconstruction and classification. To demonstrate our method, we design and fabricate a CS-SPAD sensor chip, build a prototype imaging system, and demonstrate the proposed on-chip snapshot compressive sensing method on the MINIST dataset and real handwritten digital images, with both qualitative and quantitative results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.