This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Granulocyte colony stimulating factor (GCSF) is a cytokine with immunomodulation effects. However, little is known about its role in metabolic diseases. In the current study we aimed to explore the role of GCSF in non-alcoholic fatty liver disease (NAFLD). GCSF-/- mice were used to investigate the function of GCSF in vivo after high fat diet (HFD). Primary hepatocytes were used for evaluating the function of GCSF in vitro. Liver immune cells were isolated and analyzed by flow cytometry. Our results showed that GCSF administration significantly increased serum triglyceride (TG) levels in patients. Circulating GCSF was markedly elevated in HFD-fed mice. GCSF-/- mice exhibited alleviated HFD-induced obesity, insulin resistance and hepatic steatosis. Extra administration of GCSF significantly aggravated palmitic acid (PA)-induced lipid accumulation in primary hepatocytes. Mechanically, GCSF could bind to granulocyte colony stimulating factor receptor (GCSFR) and regulate suppressors of cytokine signaling 3, Janus kinase, signal transducer and activator of transcription 3 (SOCS3-JAK-STAT3) pathway. GCSF also enhanced hepatic neutrophils and macrophages infiltration, thereby modulating NAFLD. These findings suggest that GCSF plays an important regulatory role in NAFLD and may be a potential therapeutic target for NAFLD.
Background & Aims: The DEAD (Asp-Glu-Ala-Asp)-box helicase family member DDX3x has been proven to involve in hepatic lipid disruption during HCV infection.However, the role of DDX3x in non-alcoholic fatty liver disease (NAFLD), in which lipid homeostasis is severely disrupted, remains unclear. Here, we aimed to illustrate the potential role of DDX3x in NAFLD.
Methods: DDX3x protein levels were evaluated in NAFLD patients and NAFLD models via immunohistochemistry or western blotting. In vivo ubiquitin assay was performed to identify the ubiquitination levels of DDX3x in the progression of steatosis. DDX3x protein levels in mice livers were manipulated by adeno-associated virus-containing DDX3x short hairpin RNA or DDX3x overexpression plasmid. Hepatic or serum triglyceride and total cholesterol were evaluated and hepatic steatosis was confirmed by haematoxylin and eosin staining and oil red o staining. Western blotting was performed to identify the underlying mechanisms of DDX3x involving in the progression of NAFLD. Results: DDX3x protein levels were significantly decreased in NAFLD patients and NAFLD models. DDX3x protein might be degraded via ubiquitin-proteasome system in the progression of steatosis. Knockdown of hepatic DDX3x exacerbated HFDinduced hepatic steatosis in mice, while overexpression of hepatic DDX3x alleviated HFD-induced hepatic steatosis in mice. Further explorative experiments revealed that knockdown of DDX3x could lead to the overactivation of mTORC1 signalling pathway which exacerbates NAFLD. Conclusions: DDX3x involved in the progression of NAFLD via affecting the mTORC1 signalling pathway. DDX3x might be a potential target for NAFLD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.