Nowadays, the aviation industry pays more attention to emission reduction toward the net-zero carbon goals. However, the volume of global passengers and baggage is exponentially increasing, which leads to challenges for sustainable airports. A baggage-free airport terminal is considered a potential solution in solving this issue. Removing the baggage operation away from the passenger terminals will reduce workload for airport operators and promote passengers to use public transport to airport terminals. As a result, it will bring a significant impact on energy and the environment, leading to a reduction of fuel consumption and mitigation of carbon emission. This paper studies a baggage collection network design problem using vehicle routing strategies and augmented reality for baggage-free airport terminals. We use a spreadsheet solver tool, based on the integration of the modified Clark and Wright savings heuristic and density-based clustering algorithm, for optimizing the location of logistic hubs and planning the vehicle routes for baggage collection. This tool is applied for the case study at London City Airport to analyze the impacts of the strategies on carbon emission quantitatively. The result indicates that the proposed baggage collection network can significantly reduce 290.10 tonnes of carbon emissions annually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.