Canonical transformation plays a fundamental role in simplifying and solving classical Hamiltonian systems. We construct flexible and powerful canonical transformations as generative models using symplectic neural networks. The model transforms physical variables towards a latent representation with an independent harmonic oscillator Hamiltonian. Correspondingly, the phase space density of the physical system flows towards a factorized Gaussian distribution in the latent space. Since the canonical transformation preserves the Hamiltonian evolution, the model captures nonlinear collective modes in the learned latent representation. We present an efficient implementation of symplectic neural coordinate transformations and two ways to train the model. The variational free energy calculation is based on the analytical form of physical Hamiltonian. While the phase space density estimation only requires samples in the coordinate space for separable Hamiltonians. We demonstrate appealing features of neural canonical transformation using toy problems including two-dimensional ring potential and harmonic chain. Finally, we apply the approach to real-world problems such as identifying slow collective modes in alanine dipeptide and conceptual compression of the MNIST dataset. arXiv:1910.00024v2 [cond-mat.stat-mech]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.