The Eurasian avian-like swine (EA) H1N1 virus has affected the Chinese swine industry, and human infection cases have been reported occasionally. However, little is known about the pathogenic mechanism of EA H1N1 virus. In this study, we compared the mouse pathogenicity of A/swine/Guangdong/YJ4/2014 (YJ4) and A/swine/Guangdong/MS285/2017 (MS285) viruses, which had similar genotype to A/Hunan/42443/2015 (HuN-like). None of the mice inoculated with 106 TCID50 of YJ4 survived at 7 days post infection, while the survival rate of the MS285 group was 100%. Therefore, a series of single fragment reassortants in MS285 background and two rescued wild-type viruses were generated by using the reverse genetics method, and the pathogenicity analysis revealed that the PB2 gene contributed to the high virulence of YJ4 virus. Furthermore, there were 11 amino acid differences in PB2 between MS285 and YJ4 identified by sequence alignment, and 11 single amino acid mutant viruses were generated in the MS285 background. We found that the R251K mutation significantly increased the virulence of MS285 in mice, contributed to high polymerase activity and enhanced viral genome transcription and replication. These results indicate that PB2-R251K contributes to the virulence of the EA H1N1 virus and provide new insight into future molecular epidemiological surveillance strategies.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a huge threat to the modern pig industry, and current vaccine prevention strategies could not provide full protection against it. Therefore, exploring new anti-PRRSV strategies is urgently needed. Ginsenoside Rg1, derived from ginseng and notoginseng, is shown to exert anti-inflammatory, neuronal apoptosis-suppressing and anti-oxidant effects. Here we demonstrate Rg1-inhibited PRRSV infection both in Marc-145 cells and porcine alveolar macrophages (PAMs) in a dose-dependent manner. Rg1 treatment affected multiple steps of the PRRSV lifecycle, including virus attachment, replication and release at concentrations of 10 or 50 µM. Meanwhile, Rg1 exhibited broad inhibitory activities against Type 2 PRRSV, including highly pathogenic PRRSV (HP-PRRSV) XH-GD and JXA1, NADC-30-like strain HNLY and classical strain VR2332. Mechanistically, Rg1 reduced mRNA levels of the pro-inflammatory cytokines, including IL-1β, IL-8, IL-6 and TNF-α, and decreased NF-κB signaling activation triggered by PRRSV infection. Furthermore, 4-week old piglets intramuscularly treated with Rg1 after being challenged with the HP-PRRSV JXA1 strain display moderate lung injury, decreased viral load in serum and tissues, and an improved survival rate. Collectively, our study provides research basis and supportive clinical data for using Ginsenoside Rg1 in PRRSV therapies in swine.
In 2018, there was an outbreak of African swine fever (ASF) in China, which spread to other provinces in the following 3 years and severely damaged China's pig industry. ASF is caused by the African swine fever virus (ASFV). Given that the genome of the African swine fever virus is very complex and whole genome information is currently inadequate, it is important to efficiently obtain virus genome sequences for genomic and epidemiological studies. The prevalent ASFV strains have low genetic variability; therefore, whole genome sequencing analysis provides a basis for the study of ASFV. We provide a method for the efficient sequencing of whole genomes, which requires only a small number of tissues. The database construction method was selected according to the genomic types of ASFV, and the whole ASFV genome was obtained through data filtering, host sequence removal, virus classification, data assembly, virus sequence identification, statistical analysis, gene prediction, and functional analysis. Our proposed method will facilitate ASFV genome sequencing and novel virus discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.