Carbonate minerals as a dominant carbon host can be transported to the Earth’s deep interior via subduction of the oceanic lithosphere, and their physicochemical behavior potentially has a significant influence on the compositional heterogeneity and physical properties in the deep mantle. In this study, we measured the electrical conductivity of natural siderite at 1–3 GPa and 100–700°C using a complex impedance analyzer in a large volume multi-anvil high-pressure apparatus. A sharp increase in conductivity was observed at ∼400°C under various pressures, and subsequently, the electrical conductivity keeps anomalously high values in the whole temperature range owing to a small quantity of interconnected highly conductive phases (graphite and magnetite) produced from the low degree decarbonation of siderite. The change in electrical conductivity and activation enthalpy suggest that the conduction mechanisms before and after low degree decarbonation of siderite are the small polaron (electron hopping in Fe2+–Fe3+) and highly conductive phases, respectively. Our results indicate the incipient decarbonation temperatures at 1–3 GPa are considerably lower than the decomposition boundary of siderite determined by phase equilibrium experiments, implying the initial decarbonation reaction of Fe-bearing carbonates in the subducting oceanic crust occurs at a shallower depth. The 30 vol.% of siderite is required to enhance the electrical conductivity of (Mg, Fe)CO3 solid solutions. Magnetite and graphite generated from the decarbonation reaction of the siderite component of Fe-bearing carbonate make a significant contribution to the high conductivity anomaly observed in the slab-mantle wedge interface.
As a dominant water carrier, hydrous silicate minerals and rocks are widespread throughout the representative regions of the mid-lower crust, upper mantle, and subduction zone of the deep Earth interior. Owing to the high sensitivity of electrical conductivity on the variation of water content, high-pressure laboratory-based electrical characterizations for hydrous silicate minerals and rocks have been paid more attention to by many researchers. With the improvement and development of experimental technique and measurement method for electrical conductivity, there are many related results to be reported on the electrical conductivity of hydrous silicate minerals and rocks at high-temperature and high-pressure conditions in the last several years. In this review paper, we concentrated on some recently reported electrical conductivity results for four typical hydrous silicate minerals (e.g., hydrous Ti-bearing olivine, epidote, amphibole, and kaolinite) investigated by the multi-anvil press and diamond anvil cell under conditions of high temperatures and pressures. Particularly, four potential influence factors including titanium-bearing content, dehydration effect, oxidation−dehydrogenation effect, and structural phase transition on the high-pressure electrical conductivity of these hydrous silicate minerals are deeply explored. Finally, some comprehensive remarks on the possible future research aspects are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.