The openness and extensibility of Android have made it a popular platform for mobile devices and a strong candidate to drive the Internet-of-Things. Unfortunately, these properties also leave Android vulnerable, attracting attacks for profit or fun. To mitigate these threats, numerous issue-specific solutions have been proposed. With the increasing number and complexity of security problems and solutions, we believe this is the right moment to step back and systematically re-evaluate the Android security architecture and security practices in the ecosystem. We organize the most recent security research on the Android platform into two categories: the software stack and the ecosystem. For each category, we provide a comprehensive narrative of the problem space, highlight the limitations of the proposed solutions, and identify open problems for future research. Based on our collection of knowledge, we envision a blueprint for engineering a secure, next-generation Android ecosystem.
Repackaged Android applications (or simply apps) are one of the major sources of mobile malware and also an important cause of severe revenue loss to app developers. Although a number of solutions have been proposed to detect repackaged apps, the majority of them heavily rely on code analysis, thus suffering from two limitations: (1) poor scalability due to the billion opcode problem; (2) unreliability to code obfuscation/app hardening techniques. In this paper, we explore an alternative approach that exploits core resources, which have close relationships with codes, to detect repackaged apps. More precisely, we define new features for characterizing apps, investigate two kinds of algorithms for searching similar apps, and propose a two-stage methodology to speed up the detection. We realize our approach in a system named ResDroid and conduct large scale evaluation on it. The results show that ResDroid can identify repackaged apps efficiently and effectively even if they are protected by obfuscation or hardening systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.