Epidemiological studies have verified the critical role that antioxidative stress plays in protecting vascular endothelial cells. The aims of the present study were to investigate the antioxidative activities and differential regulation of nuclear erythroid-related factor 2- (Nrf2-) mediated gene expression by Xueshuan Xinmaining Tablet (XXT), a traditional Chinese medicine with the effect of treating cardiovascular diseases. The antioxidative activities of XXT were investigated using quantitative real-time PCR (qPCR), a PCR array, and western blotting. Our results indicated that XXT exhibited potent antioxidative activities by suppressing the levels of hydrogen peroxide- (H2O2-) induced reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs). We were also conscious of strong Nrf2-mediated antioxidant induction. XXT enhanced the expressions of Keap1, Nrf2, and Nrf2-mediated genes, such as glutamate-cysteine ligase modifier subunit (GCLM), NAD(P)H: quinine oxidoreductase 1 (NQO1), heme oxygenase 1 (HMOX1), and glutathione peroxidase (GPX) in HUVECs. In summary, XXT strongly activated Nrf2 and its downstream regulated genes, which may contribute to the antioxidative and vascular endothelial cell protective activities of XXT.
We analyzed the effects of a traditional Chinese medicine, Qizhi Jiangtang Jiaonang (QJJ), on insulin resistance (IR) in vitro. After an in vitro model of IR was established by treating human liver cancer cells (HepG2 cells) with palmitic acid, the cells were then treated with various concentrations of QJJ. Treatment with 400 µM palmitic acid for 24 h induced IR in HepG2 cells. The survival rate for HepG2 cells in the IR group was significantly lower than that of the untreated control group (P < 0.001); however, QJJ restored HepG2 cell survival (P < 0.001). As compared with HepG2 cells in the IR group, QJJ at all doses analyzed significantly increased glucose consumption (all P < 0.05). Moreover, treatment with all the QJJ doses significantly reduced the mean intracellular reactive oxygen species levels as compared with the IR group (all P < 0.05). Furthermore, high-dose QJJ reduced both TNF-α and IL-6 levels as compared to the IR group (all P < 0.05). QJJ ameliorated the altered PI3K, GLUT4, and RAGE expression observed with IR. In conclusion, QJJ can improve IR in HepG2 cells, which may be mediated through the IRS-1/PI3K/GLUT4 signaling pathway as well as regulation of NF-κB-mediated inflammation and oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.