Smart devices with abilities of perceiving, processing, and responding are attracting more and more attentions due to the emerging development of artificial intelligent systems, especially in biomimetic and intelligent robotics fields. Designing a smart actuator with high flexibility and multistimulation responsive behaviors to simulate the movement of creatures, such as weight lifting, heavy objects carrying via simple materials, and structural design is highly demanded for the development of intelligent systems. Herein, a soft actuator that can produce reversible deformations under the control of light, thermal, and humidity is fabricated by combining high photothermal properties of CNT/PDMS layer with the natural hydrophilic GO layer. Due to the asymmetric double-layer structure, the novel bilayer membrane-based actuator showed different bending directions under photothermal and humidity stimulations, resulting in bidirectional controllable bending behaviors. In addition, the actuation behaviors can be well controlled by directionally aligning the graphene oxide onto carbon nanotube/PDMS layer. The actuator can be fabricated into a series of complex biomimetic devices, such as, simulated biomimetic fingers, smart "tweezers", humidity control switches, which has great potential applications in flexible robots, artificial muscles, and optical control medical devices.
Fiber-shaped strain sensors with great flexibility and knittability have been tremendously concerned due to the wide applications in health manager devices, especially in human motion detection and physiological signal monitoring. Herein, a novel fiber-shaped strain sensor has been designed and prepared by interpenetrating Ag nanowires (NWs) into polyolefin elastomer nanofibrous yarn. The easy-to-obtain structure and simple roll-to-roll process make the continuous large-scale production of nanofibrous composite yarn possible. The continuous and alternating stretching and releasing reversibly change the contact probability between AgNWs in this interpenetrating network, leading to the variations of electrical resistance of the sensor. The gauge factors of strain sensors are calculated to be as high as 13920 and the minimum detection limit is only 0.065%. In addition, the strain sensor shows excellent durability during 4500 cycles with the strain of 10%. The response times of stretching and releasing strains are 10 and 15 ms, respectively. Furthermore, the strain sensor has been successfully applied in human motion detections both in single yarn and knitted fabrics. The result shows the practicability in applications of monitoring limbs movements, eye motion changes, artificial vocal cords, human pulse, and complex motions, which shows great potential in wearable sensors and electronic skin.
Functional
materials with energy storage and conversion properties
have been useful for actuating devices. Here, a new kind of torsional
fiber-based actuator including graphene oxide (GO) and natural sodium
alginate was prepared by traditional wet spinning and twisting methods,
during which the fiber structure was reconstructed, and the mechanical
energy was prestored. When the twisted GO/SA (graphene oxide/sodium
alginate) fiber was stimulated by infrared light or moisture, the
torsional structure of the fiber was activated instantaneously to
generate rapid and reversible rotational motion, thus realizing the
automatic release and re-storage process of rotational kinetic energy.
In addition, the full revolutions of the twisted GO/SA fiber have
no attenuation after 100 reversible rotations when stimulated by moisture,
which proves the excellent rotational stability. Due to its excellent
flexibility and wettability, the twisted GO/SA fiber can be woven
into a network or prepared into a series of programmable intelligent
devices, which is of great significance for future flexible intelligent
electronic devices.
Smart actuators with excellent flexibility, sensitive responsiveness, large-scale bending-deformation, and rapid deformation-recovery performance have been sought after by researchers. Two-dimensional graphene oxide (GO) is considered as an ideal candidate for humidity-responsive actuators because of its excellent moisture sensitivity. Herein, a flexible membrane-based actuator was prepared by evenly dispersing GO sheets into a three-dimensional network formed by onedimensional PVA-co-PE nanofibers (NFs) and silver nanowires (AgNWs). The three-dimensional interlaced pore structure of the AgNWs/NFs/GO composite membrane ensured its larger contact area (19.33 m 2 /g), faster moisture exchange rate, and large bending deformation under moisture stimulation. In addition, a new explanation for the spatial distribution of adsorbed water molecules and their actuating effect on the bending behaviors of composite membranes is proposed. The adsorbed water lies between the interlayer and surface layer of the composite membrane. The interlayer water molecules make the film volume expand, resulting in a large bending angle of the membrane. On the other hand, the water on the surface layers of the membrane only leads to the change in film weight, having little effect on the bending behavior. Moreover, to make the soft actuator more practical and multifunctional, a conductive AgNWs-NFs/GO bilayer membrane-based actuator was prepared by layered spraying of a AgNW on the NFs/GO membrane, which can be directly used in switching control circuits. The novel flexible membrane-based actuators are of great significance for the soft robot and intelligent control systems in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.