Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Aim To analyze and compare the mRNA N6-methyladenosine modifications in transverse aortic constriction induced mice hearts and normal mice hearts. Materials and methods Colorimetric quantification was used to probe the changes in m6A modifications in the total RNA. The expression of m6A-related enzymes was analyzed via qRT-PCR and western blotting. RNA-seq and MeRIP-seq were performed to identify genes with differences in m6A modifications or expression in the transcriptome profile. Results Compared with the control group, the TAC group exhibited higher m6A methylation levels. FTO and WTAP were downregulated after TAC, while METTL3 was significantly downregulated at the protein level. MeRIP-seq revealed that 1179 m6A peaks were upmethylated and 733 m6A peaks were downmethylated, and biological analysis of these genes exhibited a strong relationship with heart function. Conclusion Our findings provide novel information regarding m6A modification and gene expression changes in cardiac hypertrophy, which may be fundamental for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.