The atmospheric stability and ground topography play an important role in shaping wind-speed profiles. However, the commonly used power-law wind-speed extrapolation method is usually applied, ignoring atmospheric stability effects. In the present work, a new power-law wind-speed extrapolation method based on atmospheric stability classification is proposed and evaluated for flows over different types of terrain. The method uses the wind shear exponent estimated in different stability conditions rather than its average value in all stability conditions. Four stability classification methods, namely the Richardson Gradient (RG) method, the Wind Direction Standard Deviation (WDSD) method, the Wind Speed Ratio (WSR) method and the Monin–Obukhov (MO) method are applied in the wind speed extrapolation method for three different types of terrain. Tapplicability is analyzed by comparing the errors between the measured data and the calculated results at the hub height. It is indicated that the WSR classification method is effective for all the terrains investigated while the WDSD method is more suitable in plain areas. Moreover, the RG and MO methods perform better in complex terrains than the other methods, if two-level temperature data are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.