Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Triclosan (TCS) is a prevalent anthropogenic contaminant in aquatic environments and its chronic exposure can lead to a series of neurotoxic effects in zebrafish. Both qRT-PCR and WISH identified that TCS exposure resulted in significant up-regulation of miR-137, but downregulation of its regulatory genes (bcl11aa, MAPK6 and Runx1). These target genes are mainly associated with neurodevelopment and the MAPK signaling pathway, and showed especially high expression in the brain. After overexpression or knockdown treatments by manual intervention of miR-137, a series of abnormalities were induced, such as ventricular abnormality, bent spine, yolk cyst, closure of swim sac and venous sinus hemorrhage. The most sensitive larval toxicological endpoint from intervened miR-137 expression was impairment of the central nervous system (CNS), ventricular abnormalities and notochord curvature. Microinjection of microRNA mimics or inhibitors of miR-137 both caused zebrafish malformations. The posterior lateral line neuromasts became obscured and decreased in number in intervened miR-137 groups and TCS-exposure groups. Upregulation of miR-137 led to more severe neurotoxic effects than its down-regulation. Behavioral observations demonstrated that both TCS exposure and miR-137 over-expression led to inhibited hearing or vision sensitivity. HE staining indicated that hearing and vision abnormalities induced by long-term TCS exposure originated from CNS injury, such as reduced glial cells and loose and hollow fiber structures. The findings of this study enhance our mechanistic understanding of neurotoxicity in aquatic animals in response to TCS exposure. These observations provide theoretical guidance for development of early intervention treatments for nervous system diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.