Di(trispyrazolylborato)iron(ii) spin-crossover complexes with a tunable degree, nature and position of functionalization can be obtained via pyrazole exchange.
Di(trispyrazolylborato)iron(II) ([Tp2Fe]) complexes represent one of the most robust class of spin crossover complexes. Their stability renders them particularly suitable for integration in nanoscale devices, e.g. as sensors or information storage units. While prior studies of the functionalization of those derivatives have been focused on the electronic and steric effect of alkyl and -CF3 groups in position 3, a pyrazole exchange reaction between nitropyrazole and either trispyrazolylborate or its iron complex allows the regioselective installation of nitro substituents in positions 3, 4 and 5 of [Tp2Fe] complexes. The degree of substitution can be varied from 1 to 4 functionalized pyrazoles per complex. The amine functionalized analogues are accessed by reduction of the nitro analogues under hydrogen transfer conditions. With the exception of di- and tetra-3-NO2 substituted complexes, all derivatives display spin crossover properties in the solid state, with transition temperatures ranging from 180 to 380 K and showing different degree of abruptness, but no hysteresis. The Slichter-Drickamer model was used to extract empirical thermodynamic transition parameters, allowing a systematic investigation of the influence of stoichiometry, position, and electronic nature of the substitution on the magnetic properties of the complexes. Steric effects dominate for substitution in position 3, but electronic effects are significant for the other positions.
Di(trispyrazolylborato)iron(II) ([Tp2Fe]) complexes represent one of the most robust class of spin crossover complexes. Their stability renders them particularly suitable for integration in nanoscale devices, e.g. as sensors or information storage units. Prior studies of the functionalization of those derivatives have been limited to the steric effect alkyl groups in position 3. The pyrazole exchange reaction between nitropyrazole and either trispyrazolylborate or its iron complex allows the regioselective installation of nitro substituents in positions 3, 4 and 5 of [Tp2Fe] complexes. The degree of substitution can be varied from 1 to 4 functionalized pyrazoles per complex. The amine functionalized analogues are accessed by reduction of the nitro analogues under hydrogen transfer conditions. With the exception of di-and tetra-3-NO2 substituted complexes, all derivatives display spin crossover properties in the solid state, with transition temperatures ranging from 180 to 380 K and showing different degree of abruptness, but no hysteresis. The Slichter-Drickamer model was used to extract empirical thermodynamic transition parameters, allowing a systematic investigation of the influence of stoichiometry, position, and electronic nature of the substitution on the magnetic properties of the complexes.Steric effects dominate for substitution in position 3, but electronic effects are significant for the other positions.
Di(trispyrazolylborato)iron(II) ([Tp2Fe]) complexes represent one of the most robust class of spin crossover complexes. Their stability renders them particularly suitable for integration in nanoscale devices, e.g. as sensors or information storage units. While prior studies of the functionalization of those derivatives have been focused on the electronic and steric effect of alkyl and -CF3 groups in position 3, a pyrazole exchange reaction between nitropyrazole and either trispyrazolylborate or its iron complex allows the regioselective installation of nitro substituents in positions 3, 4 and 5 of [Tp2Fe] complexes. The degree of substitution can be varied from 1 to 4 functionalized pyrazoles per complex. The amine functionalized analogues are accessed by reduction of the nitro analogues under hydrogen transfer conditions. With the exception of di- and tetra-3-NO2 substituted complexes, all derivatives display spin crossover properties in the solid state, with transition temperatures ranging from 180 to 380 K and showing different degree of abruptness, but no hysteresis. The Slichter-Drickamer model was used to extract empirical thermodynamic transition parameters, allowing a systematic investigation of the influence of stoichiometry, position, and electronic nature of the substitution on the magnetic properties of the complexes. Steric effects dominate for substitution in position 3, but electronic effects are significant for the other positions.
Di(trispyrazolylborato)iron(II) ([Tp2Fe]) complexes represent one of the most robust class of spin crossover complexes. Their stability renders them particularly suitable for integration in nanoscale devices, e.g. as sensors or information storage units. Prior studies of the functionalization of those derivatives have been limited to the steric effect alkyl groups in position 3. The pyrazole exchange reaction between nitropyrazole and either trispyrazolylborate or its iron complex allows the regioselective installation of nitro substituents in positions 3, 4 and 5 of [Tp2Fe] complexes. The degree of substitution can be varied from 1 to 4 functionalized pyrazoles per complex. The amine functionalized analogues are accessed by reduction of the nitro analogues under hydrogen transfer conditions. With the exception of di- and tetra-3-NO2 substituted complexes, all derivatives display spin crossover properties in the solid state, with transition temperatures ranging from 180 to 380 K and showing different degree of abruptness, but no hysteresis. The Slichter-Drickamer model was used to extract empirical thermodynamic transition parameters, allowing a systematic investigation of the influence of stoichiometry, position, and electronic nature of the substitution on the magnetic properties of the complexes. Steric effects dominate for substitution in position 3, but electronic effects are significant for the other positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.