This study aims to explore the effects of microRNA-126 (miR-126) on tumor proliferation and angiogenesis of hepatocellular carcinoma (HCC) by targeting EGFL7. HCC tissues and adjacent normal tissues were obtained from 71 HCC patients. Immunohistochemistry (IHC) was conducted to detect expressions of EGFL7 and VEGF and the micro-vessel density (MVD). HCC cell lines were collected and assigned into the blank, miR-126 mimics, miR-126 inhibitors, miR-126 mimics negative control (NC), miR-126 inhibitors NC, si-EGFL7, and miR-126 inhibitors + si-EGFL7 groups. Expressions of miR-126 and EGFL7 mRNA were detected by qRT-PCR assay. The protein expressions of EGFL7 and VEGF were measured by Western blotting. MTT assay was used to measure the proliferation of HCC cells. Tumor xenograft model in nude mice was utilized to evaluate the influence of miR-126 on tumor growth. HCC tissues had higher miR-126 expression and lower EGFL7 mRNA expression than adjacent normal tissues. Compared with the blank, miR-126 mimic NC, miR-126 inhibitor NC and miR-126 inhibitors + si-EGFL7 groups, the protein expressions of EGFL7 and VEGF and cell proliferation were reduced in the miR-126 mimics and si-EGFL7 groups, while the opposite trend was found in the miR-126 inhibitors group. Compared with the blank and miR-126 inhibitors + siRNA-EGFL7 groups, tumor size, tumor weight, and MVD of transplanted tumors in nude mice were significantly reduced in the miR-126 mimics and siRNA-EGFL7 groups, while the opposite trend was found in the miR-126 inhibitors group. In conclusion, miR-126 could inhibit tumor proliferation and angiogenesis of HCC by down-regulating EGFL7 expression.
Hepatocellular carcinoma (HCC) is the leading cause of cancer related death worldwide. The number of deaths is proportional to the global incidence, which highlights the aggressive tumor biology and lack of effective therapies. Dysregulation of microRNAs has been implicated in carcinogenesis and progression of liver cancer. Here, we identified that miR-1258 was significantly downregulated in HCC and associated with poor patients' survival. Overexpression of miR-1258 significantly inhibits liver cancer cell growth, proliferation and tumorigenicity through increasing cell cycle arrest in G0/G1 phase and promotes cell apoptosis. Interestingly, stable overexpression of miR-1258 suppresses cell migration, stemness and increases sensitivity of HCC cells to chemotherapy drug like doxorubicin. The CDC28 protein kinase regulatory subunit 1B (CKS1B) was identified as a functional downstream target of miR-1258. Re-expression of CKS1B overcomes miR-1258 induced apoptosis and increases stemness of HCC cells, suggesting that loss of miR-1258 contributes to carcinogenesis and progression of liver cancer through targeting CKS1B. Therefore, loss of miR-1258 may be a potential diagnostic and prognostic biomarker and blocking miR-1258-CKS1B axis is a potential therapeutic strategy in HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.