Obtaining the geographic coordinates of single fruit trees enables the variable rate application of agricultural production materials according to the growth differences of trees, which is of great significance to the precision management of citrus orchards. The traditional method of detecting and positioning fruit trees manually is time-consuming, labor-intensive, and inefficient. In order to obtain high-precision geographic coordinates of trees in a citrus orchard, this study proposes a method for citrus tree identification and coordinate extraction based on UAV remote sensing imagery and coordinate transformation. A high-precision orthophoto map of a citrus orchard was drawn from UAV remote sensing images. The YOLOv5 model was subsequently used to train the remote sensing dataset to efficiently identify the fruit trees and extract tree pixel coordinates from the orchard orthophoto map. According to the geographic information contained in the orthophoto map, the pixel coordinates were converted to UTM coordinates and the WGS84 coordinates of citrus trees were obtained using Gauss–Krüger inverse calculation. To simplify the coordinate conversion process and to improve the coordinate conversion efficiency, a coordinate conversion app was also developed to automatically implement the batch conversion of pixel coordinates to UTM coordinates and WGS84 coordinates. Results show that the Precision, Recall, and F1 Score for Scene 1 (after weeding) reach 0.89, 0.97, and 0.92, respectively; the Precision, Recall, and F1 Score for Scene 2 (before weeding) reach 0.91, 0.90 and 0.91, respectively. The accuracy of the orthophoto map generated using UAV remote sensing images is 0.15 m. The accuracy of converting pixel coordinates to UTM coordinates by the coordinate conversion app is reliable, and the accuracy of converting UTM coordinates to WGS84 coordinates is 0.01 m. The proposed method is capable of automatically obtaining the WGS84 coordinates of citrus trees with high precision.
Accelerating the development of agricultural aviation technology is the need of China’s modern agricultural construction. With the rise of emerging industries such as artificial intelligence, biotechnology, autonomous navigation, and the Internet of Things, agricultural aviation is further developing toward the direction of intelligence to meet the requirements of efficient and sophisticated agricultural aviation operations. Bionics is a multi-discipline and comprehensive border subject. It is produced by the mutual penetration and integration of life science and engineering science. Bionic technology has received more and more attention in recent years, and breakthroughs have been made in the fields of biomedicine and health, military, brain science and brain-like navigation, and advanced manufacturing. This study summarized the research progress of biomimetic technology in the field of agricultural aviation from three aspects of biological perception, biological behavior, and biological intelligence. On this basis, problems of related research and application of agricultural aircraft in real-time obstacle avoidance, path planning, and intelligent navigation were analyzed. Combined with the practice of the rapid development of agricultural aircraft, research and application of bionic technology suitable for agricultural aircraft were then proposed. Finally, prospects of agricultural aero-bionic technology were also discussed from multiple bionic target fusion, three-dimensional spatial information exploration, sensors, and animal brain system mechanism. This review provides a reference for the development of bionic technology in China’s agricultural aviation.
IntroductionCurrent aerial plant protection with Unmanned Aerial Vehicles (UAV) usually applies full coverage route planning, which is challenging for plant protection operations in the orchards in South China. Because the fruit planting has the characteristics of dispersal and irregularity, full-coverage route spraying causes re-application as well as missed application, resulting in environmental pollution. Therefore, it is of great significance to plan an efficient, low-consumption and accurate plant protection route considering the flight characteristics of UAVs and orchard planting characteristics.MethodsThis study proposes a plant protection route planning algorithm to solve the waypoint planning problem of UAV multi-objective tasks in orchard scenes. By improving the heuristic function in Ant Colony Optimization (ACO), the algorithm combines corner cost and distance cost for multi-objective node optimization. At the same time, a sorting optimization mechanism was introduced to speed up the iteration speed of the algorithm and avoid the influence of inferior paths on the optimal results. Finally, Multi-source Ant Colony Optimization (MS-ACO) was proposed after cleaning the nodes of the solution path.ResultsThe simulation results of the three test fields show that compared with ACO, the path length optimization rate of MS-ACO are 3.89%, 4.6% and 2.86%, respectively, the optimization rate of total path angles are 21.94%, 45.06% and 55.94%, respectively, and the optimization rate of node numbers are 61.05%, 74.84% and 75.47%, respectively. MS-ACO can effectively reduce the corner cost and the number of nodes. The results of field experiments show that for each test field, MS-ACO has a significant optimization effect compared with ACO, with an optimization rate of energy consumption per meter of more than 30%, the optimization rate of flight time are 46.67%, 56% and 59.01%, respectively, and the optimization rate of corner angle are 50.76%, 61.78% and 71.1%, respectively.DiscussionThe feasibility and effectiveness of the algorithm were further verified. The algorithm proposed in this study can optimize the spraying path according to the position of each fruit tree and the flight characteristics of UAV, effectively reduce the energy consumption of UAV flight, improve the operating efficiency, and provide technical reference for the waypoint planning of plant protection UAV in the orchard scene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.