To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift problem, where noisy pseudo labels on unlabeled data are in-
Neural sequence models exhibit limited compositional generalization ability in semantic parsing tasks. Compositional generalization requires algebraic recombination, i.e., dynamically recombining structured expressions in a recursive manner. However, most previous studies mainly concentrate on recombining lexical units, which is an important but not sufficient part of algebraic recombination. In this paper, we propose LEAR, an end-toend neural model to learn algebraic recombination for compositional generalization. The key insight is to model the semantic parsing task as a homomorphism between a latent syntactic algebra and a semantic algebra, thus encouraging algebraic recombination. Specifically, we learn two modules jointly: a Composer for producing latent syntax, and an Interpreter for assigning semantic operations. Experiments on two realistic and comprehensive compositional generalization benchmarks demonstrate the effectiveness of our model. The source code is publicly available at https://github.com/microsoft/ContextualSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.